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ABSTRACT

THE MARKOV-DUBINS PROBLEM WITH FREE TERMINAL DIRECTION
IN A NONPOSITIVELY CURVED CUBE COMPLEX

by

Jason Thomson La Corte

The University of Wisconsin–Milwaukee, 2015
Under the Supervision of Professor Craig Guilbault

State complexes are nonpositively curved cube complexes that model the state spaces of

reconfigurable systems. The problem of determining a strategy for reconfiguring the

system from a given initial state to a given goal state is equivalent to that of finding a path

between two points in the state complex. The additional requirement that allowable paths

must have a prescribed initial direction and minimal turning radius determines a

Markov-Dubins problem with free terminal direction (MDPFTD).

Given a nonpositively curved, locally finite cube complex X , we consider the set of

unit-speed paths which satisfy a certain smoothness condition in addition to the

boundary conditions and curvature constraint that define a MDPFTD. We show that this

set either contains a path of minimal length, or is empty.

We then focus on the case that X is a surface with a nonpositively curved cubical

structure. We show that any solution to a MDPFTD in X must consist of finitely many

geodesic segments and arcs of constant curvature, and we give an algorithm for

determining those solutions to the MDPFTD in X which are CL paths, that is, made up of

an arc of constant curvature followed by a geodesic segment. Finally, under the

assumption that the 1-skeleton of X is d-regular, we give sufficient conditions for a

topological ray in X of constant curvature to be a rose curve or a proper ray.
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1

Chapter 1

Introduction

1.1 Motivation

The current work is devoted to the problem of finding the shortest curvature-constrained

path between two points with prescribed initial direction in a nonpositively curved cube

complexX , which we will call the Markov-Dubins problem with free terminal direction. Special

attention is paid to the case dimX “ 2.

This problem arises naturally in connection with reconfigurable systems, a class of control-

lable dynamical systems introduced by Ghrist in [1]. Ghrist’s initial examples of reconfig-

urable systems were metamorphic robots—aggregates capable of changing shape through

the independent motion of their constituent cells—but many of the industrial robots which

can already be found in the factories of the present day may be formally regarded as

reconfigurable systems, and further examples outside the field of robotics abound [17].

The state space of a reconfigurable system can be constructed as a nonpositively curved

cube complex called a state complex. Paths in the state complex correspond to strategies

for reconfiguring the system from one state to another. If we require our paths to have

bounded curvature, we impose a dynamic constraint which not only rules out physically
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unrealistic motion, but also limits the amount of strain placed on the moving parts of the

system.

Finding a computationally feasible method for determining shortest curvature-constrained

paths with prescribed initial direction is an important first step toward the development of

fault-tolerant control algorithms able to seamlessly adopt new reconfiguration strategies

in response to a dynamically changing environment. Indeed, the task which must be

carried out by such an algorithm can be viewed as a game of pursuit and evasion in

which a human or computer controller chases a moving goal state in the state complex,

and it is partly in response to the request for additional study of dynamically constrained

pursuit-evasion problems in CAT(0) domains made in [2] that the current work has been

undertaken.

1.2 Reconfigurable systems and their state spaces

Roughly speaking, a reconfigurable system consists of a graph G with labeled vertices,

called the workspace graph, and a collection of partial relabelings, or generators. A labeling

of the workspace graph represents a state of the underlying system, e.g. the angle of all

the joints in a robotic arm. Each generator ϕ consists of a pair of labelings of the vertices

in a given subgraph H of G. If the current labeling of VertH Ď VertG matches one of the

labelings in ϕ, then ϕ acts on G by relabeling VertH so that it matches the other labeling in

ϕ. In this way, each generator represents an invertible elementary motion of the underlying

system.

The formal definition [17] of a reconfigurable system is as follows.

Definition 1.2.1. Fix a set A of labels, and a graph G called the workspace graph. A state

is a function VertpGq Ñ A. A generator ϕ is an ordered triple

psupppϕq, trpϕq, tuloc
0 , uloc

1 uq,
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where

• supppϕq is a subgraph of G, called the support of ϕ;

• trpϕq is a subgraph of supppϕq, called the trace of ϕ; and

• tuloc
0 , uloc

1 u is an unordered pair of functions

uloc
0 , uloc

1 : Vertpsuppϕq Ñ A,

called local states, such that

uloc
0 ‰ uloc

1

and

uloc
0

ˇ

ˇ

supppϕqrtrpϕq “ uloc
1

ˇ

ˇ

supppϕqrtrpϕq.

A generator ϕ is said to be admissible at a state u if

u
ˇ

ˇ

supppϕq “ uloc
0 .

If a generator ϕ is admissible at a state u, we define the action of ϕ on G to be

ϕrus “

$

’

&

’

%

u on Vert
`

Gr supppϕq
˘

uloc
1 on supppϕq.

A reconfigurable system on G is a collection of generators and a collection of states closed

under all possible actions. A reconfigurable system is locally finite if the number of

generators admissible at u, as u ranges over all possible states, is bounded above.

For example, consider a pair of robots free to slide along two tracks in a factory floor, one

a line segment, and one a circle. To obtain the workspace graph, we discretize the two

tracks. (See Figure 1.1.)
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Figure 1.1: Workspace graph.

Representing the two robots as dots of different colors, a state is a function

u : t1, 2, 3, 4, 5, 6, 7u Ñ t , , u.

A generator ϕ is defined by the following pair of moves:

If vertex 1 is occupied by and vertex 2 is unoccupied,

move to vertex 2.

If vertex 2 is occupied by and vertex 1 is unoccupied,

move to vertex 1.

Here, supppϕq “ t1, 2u, trpϕq “ ∅, and

uloc
0 : 1 ÞÑ , 2 ÞÑ ; uloc

1 : 1 ÞÑ , 2 ÞÑ .

Definition 1.2.2. Given a reconfigurable system, we define its transition graph T to be the

graph whose vertices are possible states, and join a pair of states by an edge if there exists

a generator that toggles the system between them (Figure 1.2).

The transition graph T is analogous to the Cayley graph of a group, but need not be

homogeneous: the number of generators that can be applied need not be the same at every

state.
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Figure 1.2: An edge in the transition graph.

A path in the transition graph determines a strategy for reconfiguring the system from

one state to another by sequentially carrying out elementary moves. But when robots can

move to adjacent positions on their tracks without collisions, it is more efficient to move

them at the same time.

Definition 1.2.3. We say that a set of k generators ϕi, i P t1, . . . , ku, commute if

trpϕiq X supppϕjq “ ∅

whenever i ‰ j. Wherever the 1-skeleton Qp1q of a k-cube appears in T, attach a k-cube

if for each vertex u of Qp1q, the generators corresponding to the edges incident with u

commute at u (Figure 1.3). The resulting cube complex is the state complex of the system.

Physically, generators commute at a state u iff they can be applied to u simultaneously,

and if the resulting configuration is independent of the order in which they are carried

out.

Interior points of a cube are intermediate stages of a transition between states. A path

along a k-cube’s diagonal represents the simultaneous execution of the k commuting gen-

erators corresponding to the k parallelism classes of the cube’s edges.

In a real world environment, changing circumstances in the physical workspace may inter-

vene to make a reconfiguration strategy that is already in progress impossible to complete.

If a goal state has been prescribed, but an obstruction prevents us from attaining it, a new

goal state in the state complex may then be prescribed. It is impractical to bring the moving

parts of the system to a dead stop and then instantaneously follow the new strategy, and

it is inefficient to slow them to a halt whenever a new strategy is required. We therefore
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Figure 1.3: A 2-cell in the state complex.

seek a solution to the problem of finding a shortest path in the state complex with a given

initial direction.

We make the assumption that sudden, drastic changes in direction by a path in the state

space correspond to jerky movements that put stress on the physical components of the

system. Taking an extreme example, a 180˝ change in direction represents a rotation of

at least one joint instantaneously followed by a rotation in the opposite direction. Such a

movement is neither desirable nor practical, and we would like to rule it out.

If our state space was Euclidean space, the “jerkiness” of such movements could be limited

simply by constraining the integral curvature of our paths. But generic state spaces do not

sufficiently resemble manifolds for classical analysis to be applicable without substantial

augmentation. For starters, they need not be of uniform dimension. Consider, for example,

the positive articulated robot arm described in [17]. It consists of several joints that bend

in the same plane, constrained so that the arm can only extend up and to the right. Its state

space (Figure 5 in [17]) is not a manifold. Examples like this show that state complexes

need not be amenable to traditional theories of flow.

We also note that the appearance of sharp corners in paths when the state complex is



www.manaraa.com

CHAPTER 1. INTRODUCTION 7

Figure 1.4: Geodesics cannot be uniquely extended through the indicated vertex.

u

U v

Figure 1.5: Markov’s problem.

visualized as a subset of Euclidean space can be misleading. In the state complex pictured,

a geodesic beginning at the leftmost point may take on any of several directions when it

meets the leftmost square, because no matter what direction is chosen, the metric on this

complex forces the angle at the point of entry into the square to be 0 (Figure 1.4). Any

approach to finding a curvature-constrained path in such a space must account for this

phenomenon.

Our search for a suitable formulation of the problem of finding length-minimal paths of

bounded curvature begins with a problem posed by Markov in the nineteenth century, and

solved by Dubins nearly seventy years later.

1.3 Dubins problems for Riemannian manifolds

In an 1889 paper published in the Russian-language journal Communications of the Kharkov

Mathematical Society, Markov considered the problem of joining an existing section of rail-

road track to a given destination v using as little new track as possible, with turning radius

nowhere less than a given bound r ą 0. The heading U of the existing track is given, but

any heading at the terminal point of the new track is acceptable (Figure 1.5).

A formal statement of Markov’s problem, which we will now give, appears in [24]. Given
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two points u,v P R2, a number r ą 0, and a unit tangent vector U at u, find the shortest

smooth curve satisfying the following properties:

• The curve’s radius of curvature is nowhere less than r.

• The curve has initial position u, initial direction U , and terminal position v.

• The curve consists of finitely many convex arcs, which need not be convex in the

same sense.

Markov showed that the solution to this problem always exists, and consists of a line seg-

ment beginning at u followed by an arc of a circleCv of radius r, whereCv is a translate of a

circle tangent to pU , uq along the directionU . In the same 1889 paper, Markov discussed the

case where a terminal vector V at v is also specified, but, as noted by Kreĭn and Nudel’man

[24], did not provide a correct solution.

The latter problem was taken up in a 1957 paper by Dubins [15] which begins by asking

which definition of “smoothness” ought to be used in its formulation. At first ignoring

Markov’s curvature constraint, Dubins observes that it is easy to choose u, v, U , V such

that the infimum of lengths of C1 paths with initial tangent vector pU , uq and terminal

tangent vector pV , vq is not attained by any such path. With only slightly more work,

Dubins shows that the same is true if we consider C2 paths. The main achievements of the

paper are to show (i) that the collection

CDubins :“ tΓ P Apu, U , v, V q : γ is differentiable and γ1 is p1{rq-Lipschitzu,

where Apu, U , v, V q is the set of paths satisfying the boundary conditions, must contain a

path of minimal length for any choice of u, v, U , V , and (ii) that such a path is made up of

at most three pieces, each a line segment or an arc of a circle of radius r.

Several authors have replicated Dubins’ results and extended them to spaces other than the

Euclidean plane. Using nothing more than advanced calculus and plane geometry, Reeds
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and Shepp gave a new proof of Dubins’ existence and characterization results, and ex-

tended Dubins’ results by allowing paths to reverse directions, thus allowing optimal arcs

to contain cusps [33]. Thomaschewski also gives a brief proof of Dubins’ characterization

using elementary methods [37]. Boissonat, Cérézo, and Leblond re-proved Dubins’ results

using Pontryagin’s maximum principle [7], while Sussmann and Tang gave an alternate

proof of Reeds and Shepp’s results which combined Pontryagin’s maximum principle with

Lie-algebraic techniques [36]. Sussmann later adapted these techniques to solve Dubins’

problem in Euclidean 3-space [35]. Again using a combination of Pontryagin’s maximum

principle and Lie algebra, Monroy and Mittenhuber gave sufficient and necessary condi-

tions for the existence of a solution to Dubins’ problem in the 2-sphere [30] and in the

hyperbolic plane [28], respectively, and in a pair of papers, Mittenhuber subsequently

did the same for the higher-dimensional manifolds of constant curvature Hn, Rn, and Sn

[27, 29]. Finally, Chitour and Sigalotti gave sufficient and necessary conditions for the

existence of a solution to Dubins’ problem in a connected, oriented, complete Riemannian

2-manifold in [12, 34, 13].

While the techniques employed by these authors are effective for studying Markov-Dubins

problems on a Riemannian manifold, they can not easily be adapted to the cases of non-

manifolds and manifolds which do not admit a Riemannian metric. Our approach in

the current work is to apply the theory of comparison geometry. This theory is equally

well-suited to Riemannian manifolds, non-Riemannian manifolds, and non-manifolds,

and is typically no more difficult to apply to higher-dimensional spaces than to lower-

dimensional ones. We are particularly interested in square complexes, but our existence

result applies to a very broad range of nonpositively curved cube complexes.

The application we have in mind is to change from a reconfiguration strategy that is

already in process to a new reconfiguration, possibly with a different goal state. We are

interested only in attaining the goal state, and we assume that the underlying reconfig-

urable system will cease all motion once it is attained. Therefore, in the current work, the



www.manaraa.com

CHAPTER 1. INTRODUCTION 10

terminal direction of the path in the state space will be regarded as meaningless, and we

focus on the Markov-Dubins problem with free terminal direction.

1.4 Algorithms for finding geodesics in a cube complex

In order to numerically determine solutions to the Markov-Dubins problem in a cube

complex, it will be necessary to employ algorithms which compute the geodesic between

two points. As we have concentrated on dimension-2 complexes, the “funnel algorithm”

of Lee and Preparata [25] will be adequate. Chepoi and Maftuleac have shown how the

funnel algorithm can be adapted for use in any nonpositively curved square complex [11],

and it is the latter adaptation which has been used in all our numerical experiments.

An algorithm for use in nonpositively curved complexes of arbitrary dimension has been

given by Ardila, Owen, and Sullivant [5]. We look forward to employing an implementa-

tion of their algorithm in the future; however, their algorithm will not be discussed in the

present work, which will not treat the numerical solution of Markov-Dubins problems in

cube complexes of dimension ě 3.

1.5 Summary of results in this work

Our first significant result is to show that a certain collection of paths is guaranteed to

contain a length-minimizing solution to the Markov-Dubins problem with free terminal di-

rection in a locally finite nonpositively curved cube complexX , provided that it is possible

to satisfy the boundary conditions with some admissible (not necessarily length-minimal)

path. That is, given two points u, v P X , a directionU at u, and a curvature bound a ą 0, we

define a set C of “smooth” paths from u to v with initial direction U and curvature nowhere

greater than a, and show that this set either is empty, or contains a path of minimum length

(Chapter 3).
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Our smoothness condition is twofold, having a piecewise component and a condition on

behavior at breakpoints. First, we require our paths to be a-Lipschitz differentiable with

respect to some cube path. Such a path γ is differentiable with a-Lipschitz derivative

in each cube in some cube path for γ. At breakpoints, which need not have Euclidean

neighborhoods, we require our paths to have zero turning angle. The direction of a path

at a point will be identified with a geodesic segment, and a pair of geodesic segments

with common initial point p will be identified with the class of curves having prescribed

approach and departure directions at p (Definition 3.3.3). These pairs, which we call hinges,

give us a concrete representation of the directional behavior of a path which is flexible

enough to accommodate the phenomenon of bifurcating geodesics.

In Section 4.1, we characterize the elements of C which have minimal length as being made

up of finitely many geodesic segments and arcs of circles of radius a. It is clear that no

bound on the number of such segments exists, due to the variety of spaces which can be

given the cell structure of a nonpositively curved cube complex. (For example, any wind-

ing hallway which does not intersect itself can be regarded as a CAT(0) complex.)

We then give an algorithm for numerically determining a large class of length-minimizing

paths in nonpositively curved square complexes of bounded curvature, and verify its

effectiveness (Section 4.2). This algorithm requires a procedure for finding geodesics in

a simple polygon and a procedure for finding geodesics in a nonpositively curved square

complex. We use the classical funnel algorithm of Lee and Preparata [25] for the former,

and a technique due to Chepoi and Maftuleac [11] for the latter. We have implemented our

algorithm in Mathematica for the spaces Xd, d ě 4 (Definition 5.0.8).

Chapter 5 focuses on the behavior of topological rays (see Definition 2.1.1) of constant

curvature in the family of spaces X “ Xd, d ě 5. These spaces, which are the Davis

complexes of certain right-angled Coxeter systems (Lemma 5.1.1), are homeomorphic to

planes. We find that rays of constant curvature may be properly embedded half-lines,

homeomorphic to circles, or self-intersecting rose curves, and give sufficient conditions
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for each case (§5.2.2 and §5.2.3).

In §5.2.2, we develop a procedure for transferring a stack—that is, a sequence of succes-

sively osculating hyperplanes—between cube complexes. (We define hyperplanes in a cube

complex in Definition 2.4.3, and what it means for two hyperplanes to osculate in Definition

2.4.9.) Our strategy for showing that a ray γ : rt1,8q Ñ Xd is proper is to construct a

sequence of nested halfspaces H`k Ą H`k`1 containing the tails of the ray: that is, such

that

γ
`

rtk,8q
˘

Ă H`k (1.1)

for some t1 ă t2 ă ¨ ¨ ¨ . Finding such a sequence of halfspaces is equivalent to determining

a stack pHkq
8
k“1. That the hyperplanes Hk bound nested halfspaces can be deduced from

the group presentation of pW , Sq (Lemma 2.4.11) and the fact that Xd is a special cube

complex.

In order to construct a suitable sequence of hyperplanes in Xd, we transfer the ray γ and

its carrier to E2 using a procedure analogous to analytic continuation. In the case under

consideration, it is easy to find (finite) sequences of of osculating hyperplanes in E2—

parallel lines which are distance 1 apart—through which the ray passes. These sequences

are then transferred back to Xd, and we verify (Lemma 5.2.5) that the result is an (infinite)

sequence of osculating hyperplanes through which γ passes.

When transferring stacks from E2 to Xd, choices must be made, as the carriers of a pair of

osculating hyperplanes of E2 meet along infinitely many pairs of adjacent 2-cells, and each

selection of such a pair determines a different pair of hyperplanes in Xd. We keep track of

our choices using a scaffold (Figure 2.8). A scaffold for a given stack is a sequence of pairs of

adjacent edges such that the pairs in each edge are respectively dual to a pair of osculating

hyperplanes. Given a suitable scaffold in E2, mapping the edges of the scaffold from E2 to

Xd yields a stack in Xd such that γ satisfies condition (1.1) (Theorem 5.2.2).
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Chapter 2

Preliminaries

2.1 Metric geometry

2.1.1 Length spaces

Definition 2.1.1. Let X be a topological space. A map γ : J Ñ X , where J Ă R is an

interval of the form ra, bs, ra, bq, or ra,8q, is a curve in X with initial point γpaq. If J “

ra, bs, γ is a path from γpaq to γpbq. If J “ ra,8q, γ is a (topological) ray. A curve is

degenerate if its image is a point.

Definition 2.1.2. The reverse path of a path γ : ra, bs Ñ X in a topological space X is

γptq “ α
`

b` pb´ tq
˘

, b ď t ď b` pb´ aq.

Definition 2.1.3. LetX be a topological space. The concatenation α˚β of paths α : ra, bs Ñ

X and β : rb, cs Ñ X such that αpbq “ βpbq is

pα ˚ βqptq “

$

’

&

’

%

αptq a ď t ď b,

βptq b ď t ď c.
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Definition 2.1.4. A change of variable is a nondecreasing continuous surjection between

compact intervals.

Definition 2.1.5. The length `pγq of a path γ : ra, bs ÑM in a metric space pM,dq is

`pγq “ sup
" m
ÿ

k“1

dpγptk´1q, γptkqq : a “ t0 ă t1 ă ¨ ¨ ¨ ă tm “ b

*

.

Lemma 2.1.6 ([9]). If γ : ra, bs Ñ X is a path in a topological space X and L : rc, ds Ñ ra, bs

is a change of variable, then `pγLq “ `pγq.

Definition 2.1.7. A metric space pX, dq is a length space if for each x, y P X ,

dpx, yq “ inf
 

`pγq : γ is a path from x to y
(

.

Definition 2.1.8 ([6, 8]). Let pX , dq be a length space. A path γ : ra, bs Ñ X such that for

some c ą 0,

dpγpsq, γptqq “ c|s´ t|, @ s, t P ra, bs,

is a geodesic (path) from u “ γpaq to v “ γpbq ‰ u. Its image ruvs is a geodesic segment.

If ruvs is given, we call γ a parametrization of ruvs, and we say γ has constant speed c. A

geodesic ray γ : ra,8q Ñ X is defined analogously.

Remark. A parametrization of a geodesic segment in a length space is a homeomorphism,

being a continuous bijection from a compact interval to a Hausdorff space.

Definition 2.1.9. A length space X is a [uniquely] geodesic space if for any two points

x, y P X there is a [unique] geodesic in X from x to y.
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Angles

Definition 2.1.10. Let x, y, z be three points in a metric space pX , dq such that x ‰ y ‰ z.

The comparison angle r=xyz is

r=xyz “ arccos
dpx, yq2 ` dpy, zq2 ´ dpx, zq2

2dpx, yqdpy, zq
. (2.1)

Lemma 2.1.11. Let x, y, z be three points in a metric space pX , dq. If x ‰ y ‰ z, then r=xyz

exists.

Proof. By a proposition of Euclid, a triangle ∆abc in R2 with

|a´ b| “ dpx, yq,

|b´ c| “ dpy, zq,

|a´ c| “ dpx, zq

can be constructed, since the sum of any two of these quantities is no less than the third

([21], Bk. I, Prop. 22). By hypothesis, dpx, yq dpy, zq ‰ 0. The Law of Cosines now yields

dpx, yq2 ` dpy, zq2 ´ dpx, zq2

2dpx, yq dpy, zq
P r´1, 1s.

Definition 2.1.12. Let J “ ra, bs or ra,8q. A curve γ : J Ñ X in a space X is initially

injective if there exists a δ ą 0 such that γ is injective on ra, a` δq.

Definition 2.1.13. Let pX , dq be a metric space. Let α : ra, cq Ñ X and β : rb, dq Ñ X be

initially injective curves with αpaq “ βpbq. The upper angle of α and β at αpaq is

p=pα, βq “ lim sup
sÑa`

tÑb`

r=αpsqαpaqβptq “ lim
sÑa`

tÑb`

“

sup
σěs
τět

r=αpσqαpaqβpτq
‰

,
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and the (Alexandrov) angle of α and β at αpaq is

=pα, βq “ lim
sÑa`

tÑb`

r=αpsqαpaqβptq.

Remark. Observe that the angle of two curves is independent of a choice of an initially

injective parametrization for each. We therefore define the angle of two nondegenerate

geodesic paths ra, bs and ra, cs in the obvious way, as the angle of their (constant speed)

parametrizations.

Lemma 2.1.14. Let pX , dq be a metric space. Let α : ra, cq Ñ X and β : rb, dq Ñ X be

initially injective curves with αpaq “ βpbq. Then p=pα, βq exists.

Proof. By hypothesis, d
`

αpsq, αpaq
˘

‰ 0 and d
`

βpbq, βptq
˘

‰ 0 for s near a and t near b.

Thus by Lemma 2.1.11, the comparison angle r=αpsqαpaqβptq is defined whenever s and t

are sufficiently near a and b respectively.

Definition 2.1.15. A length space X is nonpositively curved if for each point in X , there

exists a neighborhood N of x such that

=yxz ď r=yxz, =xyz ď r=xyz, =xzy ď r=xzy

for all x, y, z P N such that x ‰ y ‰ z. We say X is CAT(0) if in addition X is simply

connected.

Lemma 2.1.16 ([8]). CAT(0) spaces are contractible and uniquely geodesic.

Lemma 2.1.17 ([9]). If a sequence of paths γn in a nonpositively curved space X converges

uniformly to a path γ, then

`pγq ď lim inf
nÑ8

`pγnq.

Lemma 2.1.18 ([8]). Let α and β be two initially injective rays in a length space X with

common initial point. If X is nonpositively curved, then =pα, βq P r0, πs exists.
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Lemma 2.1.19 ([9], Proposition 3.6.27.1 and Exercise 3.6.28). Let α : r0, εs Ñ Rd and β :

r0, εs Ñ Rd be two paths parametrized by arclength. Suppose αp0q “ βp0q. If α and β are

differentiable at 0, then

cos =pα, βq “ xα1p0q, β1p0qy.

Proof. The angle =pα, βq exists and is equal to θ P r0, πs if

|αpsq ´ βptq|2 “ s2 ` t2 ´ 2st cos θ ` opstq.

Since α and β are differentiable at 0,

αpsq “ αp0q ` sα1p0q ` opsq and βptq “ βp0q ` tβ1p0q ` optq.

Noting that |α1p0q| “ |β1p0q| “ 1 by hypothesis, we have

|αpsq ´ βptq|2 “
ˇ

ˇsα1p0q ´ tβ1p0q ` opsq ´ optq
ˇ

ˇ

2

“ s2|α1p0q|2 ` t2|β1p0q|2 ´ 2st xα1p0q, β1p0qy ` ops2q ` opt2q ` opstq

“ s2 ` t2 ´ 2st xα1p0q, β1p0qy ` opstq.

Lemma 2.1.20 (Triangle inequality for angles: [9], Theorem 3.6.34). Letα, β, γ : r0, εs Ñ X

be paths in a metric space pX , dq with common initial point αp0q “ βp0q “ γp0q “ p. If

each of =pα, βq, =pβ, γq, and =pβ, γq exist, then =pα, γq ď =pα, βq `=pβ, γq.

2.1.2 Piecewise geodesics and turning angle of a curve

Definition 2.1.21. Let pxkqmk“0 be a finite sequence of points in a geodesic space such that

xk´1 ‰ xk for each k P t1, . . . , mu. Let γk be a parametrization of rxk´1xks for each
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k P t1, . . . , mu. Then the concatenation γ1 ˚ ¨ ¨ ¨ ˚ γm is a piecewise geodesic path with

breakpoints pxkqmk“1.

Approximation by piecewise geodesics

Definition 2.1.22. Let X be a metric space. If γ : ra, bs Ñ X is a path,

a “ t0 ă ¨ ¨ ¨ ă tm “ b,

and

γptk´1q ‰ γptkq

for k P t1, . . . , mu, we say a piecewise geodesic path σ with breakpoints
`

γptkq
˘m

k“0
is

inscribed in γ.

Lemma 2.1.23 ([16]). If X is a geodesic space, then for any nondegenerate rectifiable path

γ : ra, bs Ñ X and any ε ą 0, there is a piecewise geodesic path α : ra, bs Ñ X inscribed in

γ such that d8pα, γq ă ε, where d8 is the sup metric on C
`

ra, bs, X
˘

.

Proof. Let

a “ t0 ă ¨ ¨ ¨ ă tm “ b

be a partition of ra, bs such that γptk´1q ‰ γptkq for k P t1, . . . , mu. Let

αk : rtk´1, tks Ñ X

be a constant-speed parametrization of rγptk´1qγptkqs for k P t1, . . . , mu. Since γ is uni-

formly continuous, as ra, bs is compact, there exists a function

ωγ : r0, b´ as Ñ r0,8q
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such that

ωγpδq
δÑ0
ÝÝÝÑ 0 “ ωγp0q

and

d
`

γpsq, γptq
˘

ď ωγ
`

|s´ t|
˘

for all s, t P ra, bs. For each k P t1, . . . , mu and each t P rtk´1, tks, since

d
`

γptkq, αkptq
˘

“ d
`

αkptkq, αkptq
˘

“
tk ´ t

tk ´ tk´1
d
`

αkptkq, αkptk´1q
˘

ď d
`

αkptkq, αkptk´1q
˘

“ d
`

γptkq, γptk´1q
˘

,

we have

d
`

γptq, αkptq
˘

ď d
`

γptq, γptkq
˘

` d
`

γptkq, γptk´1q
˘

ď ωγpt´ tkq ` ωγptk ´ tk´1q
meshptjqÑ0
ÝÝÝÝÝÝÝÑ 0.

Thus, given ε ą 0, we can take meshptjq so small that

sup
tk´1ďtďtk

d
`

γptq, αkptq
˘

ă ε

for each k P t1, . . . , mu.

Turning angle

Definition 2.1.24. The turning angle at xk of a piecewise geodesic with breakpoints pxiq is

π ´=
`

rxkxk´1s, rxkxk`1s
˘

.
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Definition 2.1.25. Let X be a metric space. The turning angle at t of a curve γ : J Ñ X is

π ´=
`

γ
ˇ

ˇ

J´t
, γ

ˇ

ˇ

J`t

˘

,

where J´t “ J X p´8, ts, J`t “ J X rt,8q, and the overbar indicates the reverse path.

Lemma 2.1.26 ([8]). For any three points x ‰ y ‰ z, the piecewise geodesic rxys ˚ ryzs is a

geodesic iff its turning angle at y is 0.

Convergence behavior of angles

Definition 2.1.27. Let pxnq8n“1 and pynq8n“1 be sequences in a geodesic space. The geodesics

rxnyns converge to a geodesic rxys, and we write rxnyns Ñ rxys, if there exist parametriza-

tions of rxnyns that uniformly converge to a parametrization of rxys.

Theorem 2.1.28 (Upper semicontinuity of angles: [9], Theorem 4.3.11). Let pxnq8n“1,

pynq
8
n“1, and pznq

8
n“1 be sequences in a nonpositively curved geodesic space X with

xn ‰ yn ‰ zn distinct for each n. If rxnyns Ñ rxys and rynzns Ñ ryzs for some x, y, z P X

such that x ‰ y ‰ z, then lim sup
nÑ8

=xnynzn ď =xyz.

Corollary 2.1.29. Let pxnq8n“1, pynq8n“1, and pznq8n“1 be sequences in a nonpositively curved

geodesic space X with xn ‰ yn ‰ zn distinct for each n, and suppose rxnyns Ñ rxys and

rynzns Ñ ryzs for some x, y, z P X . If rxnyns ˚ rynzns is a geodesic for each n, then rxys ˚ ryzs

is a geodesic.

Proof. We have =xyz P r0, πs from Lemma 2.1.18, =
`

rynxns, rynzns
˘

” π from Lemma

2.1.26, and =xyz ě π by Theorem 2.1.28, so rxys ˚ ryzs is a geodesic by Lemma 2.1.26.
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2.2 Total curvature

2.2.1 Total rotation and total curvature

Remark. A piecewise geodesic’s total rotation is the discrete analogue of the integral cur-

vature of a regular curve in a smooth manifold. It is defined (below) as the sum of the

change in direction at each interior vertex. The idea that piecewise geodesics may be used

to approximate the total curvature of a path in Rd that need not be differentiable, much less

regular, appears in a 1950 paper by Milnor [26], and, as Alexandrov showed [4], generalizes

nicely to paths in certain non-Euclidean spaces.

Definition 2.2.1. Let X be a metric space. Let σ : ra, bs Ñ X be a piecewise geodesic path

with breakpoints
`

σptkq
˘m

k“0
, where a “ t0 ă t1 ă ¨ ¨ ¨ ă tm “ b. The angle of σ at its

interior vertex σptkq is

ρk :“ =
`

rσptkqσptk´1qs, rσptkqσptk`1qs
˘

.

If the angle of σ exists at each of its interior vertices, the total rotation of σ is

ρpσq :“
m´1
ÿ

k“1

pπ ´ ρkq.

Lemma 2.2.2. The total rotation of any piecewise geodesic in a nonpositively curved space

exists.

Proof. This follows immediately from Lemma 2.1.18.

Definition 2.2.3 ([26]). The total curvature τpγq of a nondegenerate path γ : ra, bs Ñ X in

a metric space X is defined by

τpγq :“ sup
 

ρpσq : σ is a piecewise geodesic path inscribed in γ
(

.
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We set τpγq :“ 0 if γ is degenerate.

2.2.2 Properties of total curvature

Lemma 2.2.4. If γ : I Ñ X is a path in a length space X , and L : I 1 Ñ I is a change of

variable, then τpγLq “ τpγq.

Proof. Write τ “ τpγq and τ 1 “ τpγLq. We show τ 1 ď τ , and omit the proof of the reverse

inequality.

Let ε ą 0. There exists a piecewise geodesic path c : ra2, b2s Ñ X inscribed in γL : ra1, b1s Ñ

X such that τ 1´ε ă ρpcq. Then there exist partitions pu0q
m
k“0 of ra2, b2s and ps0q

m
k“0 of ra1, b1s

such that cpuk´1q ‰ cpukq for k P t1, . . . , mu, cpukq “ γLpskq for k P t0, . . . , mu, and

ρpcq “
m´1
ÿ

k“1

π ´=
`

rcpukqcpuk´1qs, rcpukqcpuk`1qs
˘

“

m´1
ÿ

k“1

π ´=
`

rγptkqγptk´1qs, rγptkqγptk`1qs
˘

,

where Lpskq “ tk.

Noting that

γptk´1q “ cpuk´1q ‰ cpukq “ γptkq,

it suffices to show ptkq
m
k“0 is a partition of ra, bs. (Then c is inscribed in γ, so τ ě ρpcq ą

τ 1 ´ ε, and letting ε Ñ 0 yields τ 1 ě τ .) This is elementary: since L is nondecreasing and

γpti´1q ‰ γptiq, we have i ă j ñ si ă sj ñ ti ă tj , and since L is a continuous surjection,

t0 “ a and tm “ b.

Theorem 2.2.5 ([23, 3]). LetX be a CAT(0) space. If a sequence of piecewise geodesic paths
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σn : ra, bs Ñ X converges uniformly to a path α, then

τpαq ď lim inf
nÑ8

ρpσnq.

Furthermore, if the σn are inscribed in α, and have mesh approaching 0, then

τpαq “ lim
nÑ8

ρpσnq.

Corollary 2.2.6. Let α and β be paths whose concatenation α ˚ β is defined. Then

τpα ˚ βq “ τpαq ` τpβq ` π ´=pα, βq.

Proof. The conclusion clearly holds when α and β are piecewise geodesics. Let pρnq8n“1 and

pσnq
8
n“1 be sequences of piecewise geodesics respectively inscribed in α and β, each with

mesh approaching 0. Then τpρnq Ñ τpαq “ τpαq, τpσnq Ñ τpβq, and τpρn ˚ σnq Ñ τpα ˚ βq

by Theorem 2.2.5, and =pρn, σnq “ =pα, βq by definition. Thus

τpα˚βq “ lim
nÑ8

τpρn˚σnq “ lim
nÑ8

`

τpρnq`τpσnq`π´=pρn, σnq
˘

“ τpαq`τpβq`π´=pα, βq.

Corollary 2.2.7 (Lower semicontinuity of total curvature for paths). If a sequence of

nondegenerate paths γn in a CAT(0) space X converges uniformly to a path γ, then

τpγq ď lim inf
nÑ8

τpγnq.

Proof. By Lemma 2.1.23, for each n, there exists a piecewise geodesic path σn such that

d8pσn, γnq ď ε{n. Since γn Ñ γ,

d8pσn, γq ď ε{n` d8pγn, γq nÑ8
ÝÝÝÑ 0,
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so σn Ñ γ. By definition of total curvature, ρpσnq ď τpγnq for each n. By Theorem 2.2.5,

τpγq ď lim inf
nÑ8

ρpσnq ď lim inf
nÑ8

τpγnq.

Lemma 2.2.8. If γ : ra, bs Ñ Rd is C1 with Lipschitz derivative, then τpγq “
ş

|γ2|.

Remark. Lemma 2.2.8 is well known for twice-differentiable γ ([4], §5.3). To see that it

holds for a C1 path with Lipschitz derivative requires only an application of the following

result.

Theorem 2.2.9 (Rademacher [9]). A Lipschitz map Rn Ñ Rm is differentiable almost

everywhere.

2.3 Cell complexes

2.3.1 CW complexes

Definition 2.3.1. Write I “ r0, 1s. Let X be a topological space. A k-dimensional closed

cell, or closed k-cell in X (k P N0) is the image e of a continuous map c : Ik Ñ X , called

its characteristic map, such that the restriction of c to intpIkq is a homeomorphism. The

corresponding open cell ˝e is the image of int Ik under c.

Definition 2.3.2. Let X be a topological space. Let E “ peλqλPΛ be an indexed collection of

k-dimensional closed cells in X with characteristic maps cλ : Ikpλq Ñ eλ. If

• every point in X lies in exactly one open cell
˝
eλ, and

• each cλpBIkpλqq lies in finitely many open cells, each of dimension less than kpλq,

then X is a CW complex with cell structure E and attaching maps aλ “ cλ
ˇ

ˇ

BIk
, and we
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topologize X by declaring

A Ă X closedðñ AX eλ is closed in eλ for each λ.

The elements of X are the cells of X . If X is finite-dimensional, i.e. if

dimpXq :“ suptdimension of cells in Eu ă 8,

the topology on X is the quotient topology.

Example 2.3.3. For each pm, nq P Z2, define cpm, nq : I ˆ I Ñ R2 by

cpm, nqps, tq “ pm, nq ` ps, tq,

and let

E “ tImage cpm, nq
ˇ

ˇ

F
: pm, nq P Z2 and F is a face of I ˆ Iu.

Then R2 is a CW complex with cell structure E. We will denote this CW complex by E2.

Definition 2.3.4. Let X be a CW complex with cell structure E. A subset Y of X is a

subcomplex of X if Y is a CW complex with cell structure te P E : e Ă Y u. The k-skeleton

Xpkq ofX is the subcomplex ofX consisting of all j-cells with j ď k. The underlying graph

of X is its 1-skeleton. A cell e P E is a vertex of X if dim e “ 0, and an edge if dim e “ 1.

2.3.2 Simplicial complexes

Definition 2.3.5. Let V “ tv0, . . . , vku be a set of k`1 points in Rd such that v1´v0, . . . , vn´

v0 are linearly independent. Then the convex hull of V, convpVq, is called a k-simplex in

Rd with vertex set V. If U is a nonempty subset of V, we call convpUq a j-face of K, where

j “ #U.
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Definition 2.3.6. The union of a finite set S of simplices in Rd is a simplicial complex K if

each face of a member of S is again a member of S, and if the intersection of any two pair

of members of S is a face of each. The k-skeleton of a simplicial complex K is the union of

all j-faces of simplices in K with j ď k.

2.3.3 Cube complexes

Our definition of a cube complex deviates from that of some other authors insofar as we

require that each closed cell must be embedded (condition (1) in Definition 2.3.7), that the

link of each vertex must be simplicial (condition (3) in Definition 2.3.7), and that the dimen-

sion of a cube complex must be finite. None of the following CW complexes satisfies our

definition of a cube complex, as each violates the condition indicated in parentheses:

• a circle made up of a single edge with its endpoints glued together (1);

• a torus constructed from a single square cell by identifying each pair of opposite

edges (1);

• a pair of squares glued together along adjacent edges (3);

• a pair of 3-cubes glued together along adjacent faces (3).

On the other hand, our definition does allow a pair of cubes to meet along two or more

(nonadjacent) faces. For example, a cylinder obtained by gluing two opposite sides of a

square to two opposite sides of a second square, respectively, qualifies as a cube complex

under Definition 2.3.7.

Our reason for incorporating conditions (1) and (3) into our definition of a cube complex

is that we are primarily interested in cube complexes that arise as the state complexes

of reconfigurable systems, and all state complexes satisfy these two conditions (see [32],

Proposition 3.1.2 and the proof of Proposition 3.2.11). We will not have occasion to discuss

other species of CW complexes built from Euclidean cubes, which include (combinato-
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rial) cubical complexes, cubings, cubed complexes, and cubulations, but we refer the interested

reader to the concise summary given in [32] of the menagerie hinted at here, noting only

that the objects described by Definition 2.3.7 would be described as simple cube complexes

in that summary.

Definition 2.3.7. We define a cube complex to be a connected finite-dimensional CW

complex X such that

(1) the characteristic map of each closed cell is an isometric embedding,

(2) the restriction of each attaching map Ik Ñ X to each pk ´ 1q-face of Ik is an isometry

onto Ik´1 postcomposed with the characteristic map of some closed pk ´ 1q-cell of X ,

and

(3) the link of each vertex is a simplicial complex.

Definition 2.3.8. A square complex is a cube complex that is the union of its 2-cells.

Definition 2.3.9. We will always regard a cube complex X as being assembled from a

collection of disjoint cubes Cλ in Rd for some d P N. The map

p :
ž

Cλ Ñ X

whose restriction to each Cλ is an isometry Cλ Ñ Ik postcomposed with the characteristic

map Ik Ñ X is a defining projection for the cube complex X .

Definition 2.3.10. Let X be a cube complex. The carrier of a subset A of X is the smallest

closed subcomplex of X containing A, and will be denoted by CarrierpAq. We say X is

locally finite if each point of X has a neighborhood that meets only finitely many cells of

X .

Definition 2.3.11. The link of a vertex v of a cube complex X , which we denote by linkpvq,

is the abstract simplicial complex whose k-cells Ek are the pk ` 1q-cells in X incident with

v, with j-dimensional faces identified iff the corresponding pj ` 1q-dimensional faces are
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v v

Figure 2.1: LEFT: The link of a vertex v in a square complex (dotted purple lines). RIGHT:
The open star of v (green).

identified in X (Figure 2.1).

Definition 2.3.12. The open star of a vertex v of a cube complex X , written starpvq, is the

union of the interiors of cells incident with v (Figure 2.1). The closed star of v, written

starpvq, is the subcomplex of X whose cells are incident with v.

Remark. The link of a vertex v in a cube complex can equivalently be defined as the

spherical simplicial complex whose underlying space is a small metric sphere (boundary

of a ball) about v. See [8, 14] for details.

Definition 2.3.13. A simplicial complex K is flag if for every 1-skeleton of a k-simplex in

K, the corresponding k-simplex appears in K.

Definition 2.3.14. A cube complex X is nonpositively curved if the link of each vertex is

flag.

Definition 2.3.15. A cube complex X is CAT(0) if X is nonpositively curved and simply

connected.

Theorem 2.3.16 (Gromov: [18], p. 122). Let X be a cube complex. If the link of each vertex



www.manaraa.com

CHAPTER 2. PRELIMINARIES 29

in X is flag, then X is CAT(0).

2.3.4 The cube complex associated with a Coxeter system

The definitions and much of the notation in this subsection are taken from [14].

Definition 2.3.17. Let S “ ts1, . . . , snu be a finite set. Let M “
“

mij

‰n

i, j“1
be a symmetric

matrix with entries in NY t8u such that mii “ 1 and mij ě 2 if i ‰ j. Set

W “ xS
ˇ

ˇ psisjq
mij “ 1 : mij ă 8y.

The pair pW , Sq is a Coxeter system (of finite rank) with matrix M , and W is a Coxeter

group. If each mij is either 2 or8, we say pW , Sq is right-angled.

Definition 2.3.18. The Cayley graph CayleypW , Sq of the Coxeter system pW , Sq is defined

by taking VertpΓq “W , and attaching for each pw, sq PW ˆ S an undirected edge

E “ Epw, sq

with BE “ tw, wsu. We say such an edge is labeled by

SpEq :“ s.

Definition 2.3.19. The flag complex FlagpPq of a poset P is the abstract simplicial complex

whose simplices are the finite chains in P . The geometric realization |P | of a poset is the

geometric realization of its flag complex FlagpP q.

Example 2.3.20 ([14], Example A.4.6). Write bX for the barycentric subdivision of a simpli-

cial complex X . If K is an abstract simplicial complex, and X “ GeompKq is its geometric
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realization, then the geometric realization of K is

|K| “ FlagpKq “ cone on bX “ join of bX and a point corresponding to ∅.

If P is a poset of cells in a convex cell complex Λ, then FlagpP q is the barycentric subdivi-

sion of Λ.

Definition 2.3.21. Let pW , Sq be a right-angled Coxeter system. A special subgroup WT

of W is the subgroup generated by T Ď S. As a special case, we take W∅ to be the trivial

group teu. A subset T of S is spherical ifWT is finite. A spherical coset of pW , Sq is a coset

of a special subgroup WT for spherical T Ď S. Write

S “ SpW , Sq “ tT Ď S sphericalu,

Są∅pW , Sq “ SpW , Sqr t∅u.

The nerve LpW , Sq of pW , Sq is the abstract simplicial complex pSą∅pW , Sq, Ďq. The

geometric realization of the poset pWS, Ďq, where

WS “
ď

TPSpW , Sq

W {WT ,

the poset of special cosets of pW , Sq under subset inclusion, is a simplicial complex called

the Davis complex

ΣpW , Sq “ |WS|

of pW , Sq. A cell structure El on ΣpW , Sq that makes ΣpW , Sq a cube complex is obtained

by taking as cells the geometric realizations of all posets of the form

pWSqďwWT
“ tC PWS : C Ď wWT u

for w PW and T P SpW , Sq ([14], p. 233). The Davis complex with the cubical cell structure
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Figure 2.2: The carrier (yellow and blue) in the square complex XpW ,Sq of the nerve
LpW5, S5q (red), where W5 is the right-angled Coxeter group with generating set S5 “

ts, t, u, v, wu and nontrivial relators pstq2, ptuq2, puvq2, pvwq2, pwsq2. The dotted lines
indicate the simplicial structure of ΣpW5, S5q.

El and the piecewise Euclidean metric will be denoted by XpW , Sq. (See Figure 2.2.)

Remark. The inclusion Są∅pW , Sq ãÑ WS defined by T ÞÑ WT induces a simplicial

embedding of the nerve LpW , Sq into ΣpW , Sq.

The cardinality of T P SpW , Sq is the dimension of the cell pWSqďwWT
in El. For example,

when T “ ∅, so that wWT is the coset of W∅ “ teu consisting of the single element w PW ,

we have a vertex. When T “ tsu, we get a coset of the form wxsy, which contains the cosets

twu and twsu of W∅ “ teu, and so on. In Figure 2.2, the 2-cells of El are shown in yellow.

The nerve L is a barycentrically subdivided pentagon, shown in red; it is isomorphic to the

link of each vertex in El.
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We note thatW acts geometrically (properly, cocompactly, and by isometries) onXpW , Sq,

although we will not have occasion to use this fact. The fundamental domain is the coned-

off nerve, K “ e ˚ L. As Davis puts it, ‘the elements of S act as “reflections” across the

“mirrors” ofK’ [14]. In our illustration, the mirrors ofK are the unsubdivided edges of the

pentagon L with vertices xs, ty, xt, uy, xu, vy, xv, wy, and xw, sy. For example, pWSqďxsy is

reflected in the mirror with endpoints xs, ty and xw, sy via the isometry ofXpW , Sq induced

by left multiplication by s.

Lemma 2.3.22. Let pW , Sq be a right-angled Coxeter system. If every s P S commutes with

exactly one t P S r tsu, then XpW , Sq is a square complex.

Proof. For a right-angled Coxeter system pW , Sq, all nontrivial relators are of the form pstq2,

so the cardinality of T for each special subgroup WT is at most 2.

Remark. The product pstq2 is a relator for a right-angled Coxeter system pW , Sq if and

only if every vertex in XpW , Sq is incident with a square with edges alternately labeled

by distinct s, t P S. The opposite edges E and E1 of such a square have the same labels,

SpEq “ SpE1q.

Theorem 2.3.23 ([14], Theorem 12.2.1). Let pW , Sq be a Coxeter system. If pW , Sq is right-

angled, then XpW , Sq is CAT(0).

Remark. As we are concerned only with cube complexes, we will not need Moussong’s

well-known generalization ([14], Theorem 12.2.3) of Theorem 2.3.23 to arbitrary Coxeter

systems.

2.4 Hyperplanes

2.4.1 Basic definitions

Throughout this section, pW , Sq denotes a right-angled Coxeter system.
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Definition 2.4.1. For two edges E and E1 in a square complex X , write E ‖ E1 iff

VertpQq “ BE Y BE1

for some 2-cell Q of X , and let „ be the transitive closure of the relation ‖. That is, E „ E1

iff there exist edges E1, . . . , En (n ě 2) such that

E “ E1 ‖ E2 ‖ ¨ ¨ ¨ ‖ En “ E1.

Then „ is an equivalence relation on

F :“ t1-dimensional faces of 2-cellsu.

Since a square complex is by definition the union of its 2-cells, F “ EdgespXq. An equiva-

lence class rEs P F{ „ is a parallelism class of edges in X .

Definition 2.4.2 ([17]). Each k-cellQ in a cube complexX (k P N) is isometric to the product

space Ik by definition. Such an isometry ϕQ : Ik Ñ Q is a coordinate map on Q. Given

k P N, a k-cell E of X , and j P t1, . . . , ku, the set

tϕpt1, . . . , tkq : tj “
1
2 and ti P I for i ‰ ju

is a midplane of Q. A midplane m is dual to an edge E if mX E ‰ ∅.

Definition 2.4.3. Two midplanesm and m1 respectively, are midplane-equivalent, and we

writem » m1, ifmXm1 is a midplane. Let– be the equivalence relation obtained by taking

the transitive closure of the relation» on midplanes of cubes inX . The equivalence classes

of – are hyperplanes of X . The union of all midplanes in such an equivalence class is also

called a hyperplane of X . If H is a hyperplane (in the latter sense) and m is a midplane

contained in H which is dual to an edge E, then H is dual to E; we also say in this case

that H is dual to the edge’s label SpEq. If a hyperplane H contains a midplane m1 that is
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perpendicular in some cube of X to a midplane m, we say that H is dual to m.

Remark. The k-dimensional hyperplanes (k P N) of a square complex are in one-to-one

correspondence with the parallelism classes rEs P F{ „. This fact follows from the obser-

vation that any 1-cube m that is a midplane meets opposite edges E and E1 of the unique

2-cell Q that contains it, so

m midplane of X ðñ BE Y BE1 “ VertpQq.

We will alternately regard a hyperplane as a collection of midplanes, the (connected) union

of such midplanes, or the parallelism class of dual edges, whichever is most convenient.

For instance, identifying a hyperplane with the parallelism class of edges rEs makes it

plain that each hyperplane H is uniquely identified by a choice of edge,

H “ HpEq “ rEs.

If X is the square complex associated with a Coxeter system pW , Sq, each edge of X is

determined by a group element and a generator, so each pw, sq P W ˆ S determines a

hyperplane,

H “ Hpw, sq :“ H
`

Epw, sq
˘

.

Definition 2.4.4. Two hyperplanesH andH 1 (not necessarily distinct) are orthogonal, and

we write H K H 1, if H is dual to edges E1 and E2, H 1 is dual to edges E11 and E12 such that

for some 2-cell Q,

BE1 Y BE2 “ VertpQq “ BE11 Y BE
1
2.

Remark. If two midplanes m and m1 meet in the interior of some 2-cell Q, their respective

midplane-equivalence classes H and H 1 are obviously orthogonal.

We have defined a square complex so that all its k-cells are isometric to Ik. By exam-
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ining cases, we see that for any two hyperplanes H and H 1 in a square complex, either

dpH , H 1q ě 1 or dpH , H 1q “ 0, and if the latter is true, then H and H 1 must meet in

the interior of some k-cell (k P N). If H and H 1 meet in the interior of a 1-cell E, then

H “ rEs “ H 1. If H and H 1 meet in the interior of a 2-cell, then H K H 1. This proves

Lemma 2.4.5. Let H and H 1 be distinct hyperplanes of a square complex that are not

orthogonal. Then dpH , H 1q ě 1.

Definition 2.4.6. A hyperplaneH is two-sided if it disconnects its carrier, i.e. if CarrierpHqr

H is disconnected.

Remark. Suppose H is a two-sided hyperplane, and E is an edge dual to H . All the edges

dual to H can be consistently oriented by choosing an orientation for E and declaring all

edges in the parallelism class rEs to be oriented in the same direction [19].

Arguments establishing the following well-known elementary properties of hyperplanes

in CAT(0) cube complexes can be found in [38].

Lemma 2.4.7 ([38]). Let H be a hyperplane in a CAT(0) cube complex X . Then:

(1) H is two-sided.

(2) X rH has exactly two connected components.

(3) H is not orthogonal to itself.

(4) H is simply connected.

Definition 2.4.8. IfH is a hyperplane such thatXrH has two connected componentsH˘,

the sets H˘ are called halfspaces.

Remark. In general, a two-sided hyperplane in a square complex X need not separate X .

For example, identifying the opposite edges of r0, 2sˆ r0, 2s Ă E2 yields a torus containing

four hyperplanes of two midplanes each, and cutting the torus along any one of these

hyperplanes disconnects its carrier, but not the space.
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E

E ¢

H

H ¢

Figure 2.3: Osculating hyperplanes.

2.4.2 Osculating hyperplanes

Definition 2.4.9 ([19]). Let H and H 1 be hyperplanes (not necessarily distinct). We say H

and H 1 osculate, and we write H —H 1, if there exist adjacent edges E and E1 such that H is

dual to E, H 1 is dual to E1, and E and E1 are not both contained in any 2-cell. (See Figure

2.3.)

Counterexample. Give X “ BpI2q a cell structure by taking each face of the cube I3 as a

2-cell. Then there are no osculating hyperplanes in X .

Definition 2.4.10. For a subset A and an element x of a group G, write

CApxq “ ta P A : ax “ xau.

Remark. Let E “ Epw, sq and Epw, s1q be adjacent edges of XpW , Sqwith common vertex

w, where s, s1 P S. Let H “ Hpw, sq be the hyperplane dual to E, and let H 1 “ Hpw, s1q be

the hyperplane dual to E1. Then H and H 1 osculate iff s R CSps1q.
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Lemma 2.4.11. The distance between osculating hyperplanes in X “ XpW , Sq is 1.

Proof. Let w P VertpXq, and let E “ Epw, sq and E1 “ Epw, s1q be adjacent edges meeting

at w, where s, s1 P S. Then the distance between H “ rEs and H 1 “ rE1s is no more than 1.

Suppose H and H 1 osculate. Then s R CSps1q. In particular, s ‰ s1, and this implies

H “ rEpw, sqs ‰ rEpw, s1qs “ H 1.

In principle, it is possible that two osculating hyperplanes are orthogonal: see Figure 2.4

(bottom right). But since s and s1 do not commute, there is no square in XpW,Sq with

boundary edges cyclically labeled s, s1, s, s1. Therefore,H andH 1 are not orthogonal. Since

H and H 1 are distinct and not orthogonal, dpH,H 1q ě 1 by Lemma 2.4.5.

Lemma 2.4.12. Let H and H 1 be hyperplanes in a square complex X . Suppose H and H 1

are disjoint. Then CarrierpH 1q lies in a component of X rH .

Proof. If CarrierpH 1q meets H , then H “ H 1 or H K H 1; in either case, H and H 1 are not

disjoint. Thus CarrierpH 1q Ă X rH . Since H 1 is connected, so is its cubical neighborhood

CarrierpH 1q. The conclusion now follows.

Lemma 2.4.13. Let H and H 1 be hyperplanes in X “ XpW , Sq. If H and H 1 are osculating

hyperplanes, then CarrierpH 1q lies in a halfspace H´ of X such that BH´ “ H .

Proof. Follows from Lemmas 2.4.7, 2.4.11, and 2.4.12.

2.4.3 Special cube complexes

The definitions in this subsection are taken from [19]. Illustrations of the hyperplane

configurations discussed in Definitions 2.4.14, 2.4.15, and 2.4.16 can be found in Figure

2.4.

Definition 2.4.14. Let H be a two-sided hyperplane; then there are two possible ways that

all edges dual to H may be consistently oriented. We say H self-osculates if for one of



www.manaraa.com

CHAPTER 2. PRELIMINARIES 38

Figure 2.4: Hyperplane configurations that are forbidden in a special cube complex.
CLOCKWISE FROM TOP LEFT: a self-orthogonal hyperplane, a hyperplane that is not
two-sided, a self-osculating hyperplane, and a pair of interosculating hyperplanes.

these choices of orientation, the carrier of H contains a vertex which is the initial vertex of

two distinct edges dual to H .

Definition 2.4.15. A pair of distinct hyperplanes interosculate if they osculate and are

orthogonal.

Definition 2.4.16. A cube complex X is special if

(1) no hyperplane of X is orthogonal to itself,

(2) every hyperplane of X is two-sided,

(3) no hyperplane of X self-osculates, and

(4) no two hyperplanes of X interosculate.

The pathological cases which cannot occur in a special cube complex are illustrated in

Figure 2.4.
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Theorem 2.4.17 ([20]). A CAT(0) cube complex is special.

Theorem 2.4.18. The cube complex associated with a right-angled Coxeter system is spe-

cial.

Proof. Immediate from Theorems 2.3.23 and 2.4.17.

2.5 Some constructions for square complexes

2.5.1 Stacks

In Chapter 5, we will classify the topological rays γ : rt1,8q Ñ X of constant curvature

in a certain family of CAT(0) square complexes X . (Recall that we define a topological

ray simply to be a continuous map of a half-line into a space.) One possibility is that γ is

proper, that is, such that γ´1pKq is compact for every compact K Ă X . In this subsection,

we give a simple sufficient condition for γ to be proper. This condition is stated in terms

of a sequence of successively osculating hyperplanes

H1 — H2 — H3 — ¨ ¨ ¨

which bound a sequence of nested halfspaces. WhenX is CAT(0), the additional properties

we will require of the sequence pHkq
8
k“1 follow from the fact that its successive terms

osculate.

Definition 2.5.1. A stack in a cube complex X is a sequence pHkq
8
k“1 of successively os-

culating hyperplanes, Hk — Hk`1. We say a stack pHkq
8
k“1 is oriented if X r Hk has two

connected components for each k, and if the components H˘k of X rHk are labeled so that

H´k Ă H´k`1 and H`k Ą H`k`1 for each k.

Lemma 2.5.2. Every stack in a CAT(0) cube complex X can be oriented.
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Proof. It suffices to show that if H1 and H2 are osculating hyperplanes, then the respective

components of X rH1 and X rH2 can be labeled as H˘1 and H˘2 so that H´1 Ă H´2 and

H`1 Ą H`2 .

By Lemma 2.4.7, each hyperplaneH ofX partitionsXrH into two connected components.

Since X is CAT(0), hence special (Lemma 2.4.17), osculating hyperplanes of X cannot be

orthogonal (Definitions 2.4.16 (4) and 2.4.15). In particular, osculating hyperplanes cannot

intersect (see the Remark following Definition 2.4.4).

Let H1 and H2 be osculating hyperplanes, and let H 11, H21 (H 12, H22 ) be the two distinct

components of X r H1 (X r H2, respectively). Since H1 is connected and does not meet

H2, it must lie in one of the two connected components of X r H2. Assume H1 Ă H22

without loss of generality. Since H22 Ă X r H 12, we have H 12 Ă X r H1. If there exist

x P H 12 XH 11 and y P H 12 XH21 , then x and y can be joined by a path in H 12 Ă X rH1. But

the two distinct components H 11 and H21 of X rH1 cannot be joined by a path in X rH1:

contradiction. ThusH 12 Ă pXrH 11qXpXrH1q “ H21 orH 12 Ă pXrH21 qXpXrH1q “ H 11.

It is easy to see that the hyperplanes H1 — H2 — H3 — ¨ ¨ ¨ in an oriented stack “approach in-

finity,” in the sense that dpH1,Hnq ě n´1 for each n (use Lemma 2.4.5 and connectedness).

In a similar sense, a ray γ approaches infinity if there exists a stack pHkq
8
k“1 of hyperplanes

which chop γ up into initial segments γ
`

rt1, tkq
˘

Ă H´k and tails γ
`

ptk,8q
˘

Ă H`k for some

choice of parameter values t1 ă t2 ă t3 ă ¨ ¨ ¨ . To show that γ is a proper ray in this

situation requires only minimal additional work, as we will now show.

Definition 2.5.3. A ray γ : rt1,8q Ñ X is properly segmented by an oriented stack

pHkq
8
k“1 if for any k P N, there exists a tk ą t1 such that γ

`

rt1, tkq
˘

Ă H´k and γ
`

ptk,8q
˘

Ă

H`k . (See Figure 2.5.)



www.manaraa.com

CHAPTER 2. PRELIMINARIES 41

Figure 2.5: A ray that is properly segmented by a stack of hyperplanes in a square complex.

Lemma 2.5.4. If a ray γ in a cube complex X is properly segmented by an oriented stack

of hyperplanes, then γ is proper.

Proof. Let K Ă X be compact. Then γ´1pKq is closed, and K Ă
ŤN
k“1H

´
k “ H´N for some

N . Since

γ`N “ γ
`

ptN ,8q
˘

Ă H`N Ă X rH´N Ă X rK,

we have γ´1pKq Ă rt1, tN s.

2.5.2 Cube paths

As we have just seen, the hyperplanes of a cube complex X can be used to provide a

simple, intuitive description of the behavior of a ray in X . On the other hand, the deter-

mination of the precise intersection of a given ray with a given hyperplane would require

tedious calculations based on the ray’s local coordinates in each cube. Indeed, many of

the figures that appear in the present work were produced by Mathematica code which

carries out just such calculations. But it is more natural and, in certain special cases, far less

computationally intensive to determine the interaction of hyperplanes with the sequence

of cells through which the ray passes, rather with than the ray itself. We therefore focus on

square paths rather than rays in the sequel, noting that—for example—it is trivial to show

that a ray γ is proper given sufficient information about the behavior of a square path for
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γ as it passes through each hyperplane in a given stack.

Definition 2.5.5. An increasing sequence ptkqmk“1 in R is a subdivision of rt1, tms. An

unbounded increasing sequence ptkq8k“1 is a subdivision of rt1,8q. The tk are the break-

points of the subdivision.

Definition 2.5.6. Let γ : ra, bs Ñ X be a path in X , and let a “ t1 ă t2 ă ¨ ¨ ¨ ă tm “ b

be a subdivision of ra, bs. A sequence pQkqmk“1 of cells in X is a cube path for γ with

breakpoints ptkqmk“1 if γ
`

rtk, tk`1s
˘

Ă Qk, Qk Ć Qk`1, and Qk Č Qk`1 for all suitable k. A

cube path for a curve γ : ra,8q Ñ X is defined analogously, taking m “ 8. We write

Q
`

γ, ptkqmk“1

˘

“
 

cube paths for γ with breakpoints ptkqmk“1

(

.

If each Qk has dimension 2, Q is a square path. For an interval I in N,

QI :“
ď

tQk : k P Iu.

A cube path Q is edgewise if Qk X Qk`1 P EdgespXq for all k. A square path Q is locally

monotone edgewise if Q is edgewise and Qk XQk`1 ‰ Qk`1 XQk`2 for all k.

2.5.3 Properly segmented square paths

We now modify Definition 2.5.3 by considering a square path for γ instead of γ itself. The

new definition of a properly segmented ray can still be used to show that γ is proper, but

does not require the calculation of the precise intersection of γ with the various hyper-

planes involved.

Definition 2.5.7. Let Q :“ pQnq
8
n“1 be an edgewise square path. Q is properly segmented

by an oriented stack pHkq
8
k“1 if there exist integers 1 ď a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ such that

for each k P N,
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Condition (3) of Definition 2.5.7 violated.

Condition (3) of Definition 2.5.7 satisfied.

Figure 2.6: A square path that is properly segmented with respect to a stack passes through
the carrier of each hyperplane in the stack.

(1) Qrak, bks Ă CarrierpHkq,

(2) Qpbk, ak`1q Ă X r pHk YHk`1q, and

(3) Qrak´1, akq and Qpbk, bk`1smeet distinct components of Qrak, bksrHk (see Figure 2.6).

Lemma 2.5.8. Let X be a square complex. If Q “ pQnq
8
n“1 is a square path for a ray γ :

rt1,8q Ñ X , and Q is properly segmented by an oriented stack pHkq
8
k“1, then γ is proper.

Proof. Let K Ă X be compact; then γ´1pKq is closed. Let pakq8k“1 and pbkq8k“1 be sequences

of integers as in the previous definition. By compactness,

K X
`

ď

Q
˘

Ă Qra1, aN s
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for some N P N. Since

γ
`

ptbN`1
,8q

˘

Ă QrbN`1,8q Ă H`N`1 Ă X rH´N`1 Ă X r Qra1, aN`1q

Ă X r Qra1, aN s

Ă X r
´

K X
`

ď

Q
˘

¯

,

we have γ´1pKq Ă ra, tbN`1
s.

2.5.4 Stable cube paths

The material in this subsection will be used in Chapter 3, in which we will extract a

convergent subsequence βnk from a given sequence of paths βn using the Arzelà-Ascoli

Theorem. Here, we show how to construct a common cube path for all the βnk .

Definition 2.5.9. Let pγnq8n“1 be a sequence of curves in X with respective parameter

domains J pnq. Let
`

t
pnq
k

˘

be a subdivision of J pnq for each n. A sequence pQkq of cells

in X is a stable cube path for pγnq8n“1 with breakpoints
`

t
pnq
k

˘

if

pQkq P
Ş8
n“1Q

`

γn,
`

t
pnq
k

˘˘

.

Lemma 2.5.10 (Construction of a stable cube path). For each n P N, let γn : r0, bns Ñ X

be a path, let

Tn “
`

t
pnq
k

˘mn
k“1

be a subdivision of r0, bns, and let

pQnj q
mn´1
j“1 P Qpγn, Tnq.

If M :“ supnmn ă 8 and X is locally finite, then there exist integers m ď M , integers
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n1 ă n2 ă n3 ă ¨ ¨ ¨ , and a stable cube path

pQjq
m´1
j“1 P

Ş8
i“1Qpγ

ni , Tniq (2.2)

for the subsequence pγniq8i“1 with breakpoints ptpniqk q
mni
k“1.

Proof. We construct pniq8i“1 satisfying (2.2) by an induction of finitely many steps. Let

#Epk, nq be the number of paths γp whose cube paths agree with the cube path of γn in

the kth slot,

#Epk, nq “ #tp P N : Qpk “ Qnku.

Since X is locally finite, #Ep1, n1q “ 8 for some n1 P N. Then there exist integers n1 ă

n2 ă n3 ă ¨ ¨ ¨ such that

pQnik q
mni´1

k“1 P Qpγni , Tniq

and Qni1 “ Qn1
1 for all i P N. Reindex all sequences by the rule i :Ð li.

Let k ě 2, and assume for induction that Qnjj “ Qnj for each n P N and each j P t1, . . . , k´

1u. If #tn P N : mn “ ku “ 8, there exist integers n1 ă n2 ă n3 ă ¨ ¨ ¨ such that for all

i P N, mni “ k and

pQ
nj
j q

k´1
j“1

´

I.H.,
n“ni

¯

“ pQnij q
mni´1
j“1

(hyp)
P Qpγni , Tniq

so that

pQ
nj
j q

k´1
j“1 P

Ş8
i“1Qpγ

ni , Tniq

is as required.

Suppose #tn P N : mn “ ku ă 8. For each n P N,

pQn1
1 , . . . , Qnkk , Qnk`1, . . . , Qnmn´1q

(I.H.)
“ pQnj q

mn´1
j“1

(hyp)
P Qpγn, Tnq.

As before, #Epk`1, nk`1q “ 8 for some nk`1 P N by local finiteness, so there exist integers
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n1 ă n2 ă n3 ă ¨ ¨ ¨ such that Qnik`1 “ Q
nk`1

k`1 for all i P N. Reindex all sequences, i :Ð li.

The inductive step in this construction repeats for each incremental value of k with

#tn P N : mn “ ku ă 8,

and halts in finitely many steps because M “ supnmn ă 8.

2.5.5 Unfolding complexes, folding maps, and scaffolds

The unfolding complex and folding maps defined in this section are adaptations of the ideas

presented by Chepoi and Maftuleac in [11]. In the present work, Chepoi and Maftuleac’s

“unfolding” map of a subcomplex of a CAT(0) box complex into Rd appears as the embed-

ding whose existence is guaranteed by Theorem 4.2.1.

A key technique which will be used in Chapter 5 is the transfer of rays and their square

paths between a given square complex X and some better understood square complex X 1.

(In this work, X 1 will always be E2.) We will now give a construction which will serve as

an intermediary during the transfer, called an unfolding complex.

The unfolding complex can be roughly understood as the of a square path Q for a ray γ in

X to some common universal cover of X and X 1 which need not be specified or defined.

The point is simply that the unfolding complex is the simplest possible square complex

UpQqwhich records the adjacency data of successive squares in Q.

The unfolding complex comes with natural projections, called folding maps, onto Q and

onto some square path in X 1 to be determined. By lifting γ to UpQq and projecting the

result into X 1, we obtain a curve qγ in X 1. As we will explain in the Remark at the end of

this subsection, these folding maps can be used to determine the behavior of the ray γ in

X by using information about the interaction between qγ and the hyperplanes of X 1.

Definition 2.5.11. Let X be a square complex, and let Q :“ pQnq
m
n“1 (m ď 8) be a locally
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monotone edgewise square path. The unfolding complex U “ UpQq (or the unfolding of

Q) is the surface with boundary

U “

ˆ m
ž

n“1

pQn ˆ tnuq

˙

L

„,

where „ glues copies of successive squares in Q along their shared edge. The lift of a ray

γ : rt1,8q Ñ X to U is the unique ray pγ “ rγ : rt1,8q Ñ U defined in the obvious manner,

by requiring projQ1

`

pγpt1q
˘

“ γpt1q.

Remark. We require Q to be locally monotone edgewise in Definition 2.5.11 in order to

guarantee that U is locally Euclidean. If, say, Q1 X Q2 “ Q2 X Q3 P EdgespXq, then
Ť3
n“1Qnˆtnu Ă U would be homeomorphic to Yˆ I , where Y is the cone on three points.

Definition 2.5.12. A folding map in a cube complex X for an unfolding complex U is a

cellular map ϕ : UÑ X whose restriction to intpUq is a local isometry.

Definition 2.5.13. Let Q “ pQnq8n“1 be a square path in a square complex X with defining

projection p, say with ppCnq “ Qn for disjoint cubesCn Ă Rd. If U is the unfolding complex

of Q, the natural folding of U (Figure 2.7) is the map ψ : UÑ
Ť

Q defined by

pppxq, nq ÞÑ ppxq px P Cnq.

Given a square path Q in a square complex X , and a folding map ϕ : UpQq Ñ E2, we

would like to establish a formal procedure for mapping a stack of hyperplanes in E2 whose

carriers cover ϕpUpQqq onto a stack of hyperplanes in X whose carriers cover
Ť

Q. The

remainder of this subsection standardizes the bookkeeping involved in this procedure,

which will be used in §5.2.2.

Lemma 2.5.14. Let Q “ pQnq
8
n“1 be a square path in a square complex X . Let U be the

unfolding of Q. If ϕ : U Ñ Y is a folding map into a square complex Y , and ψ : U Ñ X

is the natural folding of U, then there exist isometries χn : ϕ
`

Qn ˆ tnu
˘

Ñ Qn making the
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Figure 2.7: Unfolding complex and natural folding.

following diagram commute for each n P N.

Qn ˆ tnu

ϕ
`

Qn ˆ tnu
˘

.....................................
χn

-
�

ϕ

Qn

ψ

-

Proof. Let p be a defining projection forX , say with ppCnq “ Qn for disjoint cubesCn Ă Rd.

Choose χn “ ψ ˝
`

ϕ
ˇ

ˇ

Qnˆtnu

˘´1, so that χn takes the generic element

ϕ
´

pppxq, nq
¯

px P Cnq

of ϕ
`

Qn ˆ tnu
˘

to ppxq.

Definition 2.5.15. Let Q “ pQnqmn“1 (m ă 8) be a square path in a square complex X that

is properly segmented with respect to a stack H “ pHkq
p
k“1 (p ă 8) of hyperplanes of X .
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Figure 2.8: A scaffold in E2.

A pair
`

pEkq
p´1
k“1, pFkq

p´1
k“1

˘

,

where each Ek and Fk is an edge of X , is a scaffold for Q with respect to H (Figure 2.8) if

there exist integers

1 “ a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ ď bp “ m

as in Definition 2.5.7 satisfying the additional assumptions that, for each k P t1, . . . , p´1u,

• Ek P EdgespQbkq and is dual to Hk,

• Fk P EdgespQak`1
q and is dual to Hk`1, and

• Ek and Fk are adjacent.

Remark. Scaffolds will be used to transfer stacks between square complexes that are the

codomains of folding maps. The proof of Theorem 5.2.2 will show how scaffolds enable
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us to identify a sequence of osculating hyperplanes with respect to which a given square

path is properly segmented, given a sequence of parallel hyperplanes (lines) in E2, each

a distance 1 from its successor. We will then be able to show that a ray is proper by

mapping the unfolding complex of its square path Q into E2, finding a stack of parallel

lines with respect to which the resulting square path qQ in E2 is properly segmented, and

then applying Theorem 5.2.2 to a suitable scaffold for qQ. Before proceeding, we record in

the following lemma, essential to the proof of Theorem 5.2.2, that it is easy to find a scaffold

for a properly segmented square path in E2.

Lemma 2.5.16 (Construction of scaffolds in E2). If Q “ pQnq
m
n“1 is an edgewise square

path in E2 that is properly segmented with respect to a stack H “ pHkq
p
k“1 of hyperplanes

of E2, then there exists a scaffold for Q with respect to H.

Proof. Let

1 “ a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ ď bp “ m

be as in Definition 2.5.7. We claim that ak`1 “ bk ` 1 for each k P t1, . . . , p ´ 1u. Then

Qak`1
and Qbk are adjacent, so

Dk :“ Qbk XQak`1

is an edge of E2. Furthermore, Dk is parallel to Hk and Hk`1 (that is, parallel to the

midplane in Qk of Hk, and to the midplane in Qk`1 of Hk`1), because Hk1 —Hk and E2

contains no interosculating hyperplanes. Let xk P BDk for k P t1, . . . , p ´ 1u. Since Dk is

parallel to each of Hk and Hk`1, there exist Ek P EdgespQbkq and Fk P EdgespQak`1
q, each

incident with xk, such that Ek is dual to Hk and Fk`1 is dual to Hk`1.

To verify the claim, let r P N such that ak`1 “ bk ` r, and assume for a contradiction that

r ě 2. SupposeQbk`1 Ă H´k . Since Qrbk`1, ak`1qXHk “ ∅, we have Qrbk`1, ak`1q Ă H´k .

But since Qrak`1, ms Ă H`k , the union of squares in Q must be disconnected, contradicting

the definition of a square path. ThusQbk`1 Ă H`k . But the only 2-cells of E2 inH`k adjacent

to CarrierHk lie in CarrierHk`1, so Qpbk, ak`1q X Hk`1 ‰ ∅, which contradicts that Q is
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properly segmented with respect to H.
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Chapter 3

Existence proof for the

Markov-Dubins problem with free

terminal direction in a locally finite

nonpositively curved cube complex

3.1 Piecewise Lipschitz differentiable paths in a cube complex

Throughout this section, X is a locally finite cube complex, p is a defining projection
š

Cλ Ñ X for X (see Definition 2.3.9), and when a sequence pQkq8k“1 of cubes of X is

given, we write

pk :“ p
ˇ

ˇ

Ck
,

where ppCkq “ Qk.

Definition 3.1.1. Let γ : J Ñ Rd be a curve, where J is a closed interval bounded below.

For t P BJ , let γ1ptq be the righthand (lefthand) derivative if t “ min J (t “ max J ,
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respectively), and for t P int J , let γ1ptq be the two-sided derivative. For a ą 0, the curve γ

is a-C1,1 (or a-Lipschitz differentiable) if γ1 : J Ñ Rd is defined and a-Lipschitz.

Definition 3.1.2. Let a ą 0, and let Q :“ pQkq be a cube path for a curve γ : J Ñ X with

breakpoints T :“ ptkq
m
k“1 (m ď 8), where J is a closed interval (so m ă 8 and tm “ max J

if sup J ă 8, and t1 “ min J : see Definitions 2.5.5 and 2.5.6). If

p´1
k γk : rtk, tk`1s Ñ Rd

is a-C1,1 for all suitable k, then γ is a-C1,1
`

T, Q
˘

(or a-Lipschitz differentiable with respect

to T and Q).

Definition 3.1.3. Let J be a compact interval, and fix M P t2, 3, 4, . . . u. A curve γ : J Ñ X

is a-C1,1pMq (or a-Lipschitz differentiable with at most M breakpoints) if there exists

a subdivision T :“ ptkq
m
k“1 of J with m ď M and a cube path Q :“ pQkq

m´1
k“1 for γ with

breakpoints T such that γ is a-C1,1
`

T, Q
˘

.

Example 3.1.4. There exist curves η, ω, ζ in R2 made up of smooth segments such that η

has a cube path but is not a-C1,1 with respect to any cube path, ω is a-C1,1 but not with

respect to any finite cube path, and ζ has no cube path at all. Let X :“ r0, 1s ˆ r´1, 1s have

2-cells Q1 “ r0, 1s2 and Q0 “ clpX rQ1q. Write e0 “ Q0 XQ1 “ r0, 1s ˆ t0u.

For 0 ď t ă 1, let

fptq “ t2 sin 1
t , ηptq “ pt, fp1´ tqq.

Let t0 “ 0 and tk “ 1 ´ 1
kπ for k P N. Write Jk “ rtk, tk`1s. Then η : r0, 1q Ñ X has cube

path Q0, Q1, Q0, . . . with respect to the subdivision pJkq8k“0. (See Figure 3.1.)

• η is not a-C1,1 for any a ě 0.
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Figure 3.1: A path which is not a-C1,1 with respect to any cube path. (Tangent vectors to
the curve η shown in black.)

Proof. Let a ě 0. For all k P N,

|η1ptkq ´ η
1ptk´1q| “ |p1, cos kπq ´ p1, cospk ´ 1qπq| “ 2.

Thus for k so large that a|tk ´ tk´1| ă 2, η1 is not a-Lipschitz on rtk, tk´1s.

Replace each segment η
ˇ

ˇ

Jk
by a parametrization Jk Ñ Qk of an arc of a circle of radius

R ě 1{2π, with endpoints ηpBJkq Ă e0. Assuming each arc is oriented with increasing first

coordinate, let ω be the concatenation of all these arcs.

• ω is p1{Rq-C1,1, being piecewise C8 with

|ω1psq ´ ω1ptq| “
şt
s |ω

2puq| du “ 1
Rpt´ sq

for any k P N and rs, ts Ď Jk, but clearly there does not exist a finite cube path for ω,

as for all t P r0, 1q, ωprt, 1sq Ć pQ0 rQ1q Y pQ1 rQ0q.

Define ζ : r0, 1s Ñ X by

ζptq “

$

’

&

’

%

pt, fp1´ 2tqq for 0 ď t ď 1
2 ,

pt, fp2t´ 1qq for 1
2 ď t ď 1.
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Figure 3.2: A path with no cube path.

Then ζ is the concatenation of two pathological curves glued together at their singular

points (Figure 3.2).

• ζ has no cube path, because for any increasing sequence ptkq8k“0 in r0, 1s, for some k,

we have ζprtk, tk`1sq Ć pQ0 rQ1q Y pQ1 rQ0q.

Remark. It is easy to see that any one of the pathological behaviors discussed in Example

3.1.4 is exhibited by some limit of finitely a-C1,1 paths. (For example, for each n P N,

modify η to obtain ηn by replacing η
ˇ

ˇ

rtn, 1s
by a regular parametrization of rtn, 1s. Then

d8pηn, ηq Ñ 0.) For this reason, we will work only with sequences of paths that are a-C1,1

with respect to m-cube paths for some fixed m ă 8.

Lemma 3.1.5 ([2]). The total curvature of an a-C1,1 path γ in Rd is
ş

|γ2ptq| dt.

3.2 Outline of existence proof

As before, X is a locally finite cube complex whose cellsQλ are the image under a defining

map p of disjoint cubes Cλ Ă Rd for some fixed d P N, and we write pλ :“ p
ˇ

ˇ

Cλ
.

Definition 3.2.1. For u, v in X such that u ‰ v, a unit tangent vector U to ppCλq at pλpuq
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for some λ, a ą 0, and M P N, write

Apu, v, Uq “
 

γ : r0, bγs Ñ X
ˇ

ˇ γ is a unit-speed path, γp0q “ u, γpbγq “ v, γ1p0q “ U
(

,

Cpa, M , u, v, Uq “
 

γ P Apu, v, Uq : γ is a-C1,1pMq
(

.

In this and the following subsection, we prove:

Theorem 3.2.2. If C “ Cpa, M , u, v, Uq is nonempty, then C contains a path β of minimal

length, i.e. `pβq “ inf
cPC

`pcq.

We now outline the proof, whose structure parallels that of Dubins’ existence proof in [15].

The following diagram indicates the various maps involved.

Ck Ă Rd

rtk, tk`1s
γnkL

n
k-

G
n
k
, G

k
-

Qk

pk

?

X

Ă X

rt
pnq
k , tpnqk`1s

Lnk

?
γ
n
k

-

(i) Let pγnq8n“1 be a sequence in Cpa, M , u, v, Uq such that `pγnq Œ inf
cPC

`pcq.

(ii) Pass to a subsequence of pγnq8n“1 for which there exists a stable finite cube path

pQkq
m
k“1, and let

Lnk : rtk, tk`1s Ñ rt
pnq
k , tpnqk`1s

be nonincreasing changes of variable for some fixed choice of t1 ă t2 ă ¨ ¨ ¨ ă tm. We

now have a-C1,1 paths

Gnk “ p´1
k γnkL

n
k
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in Ck Ă Rd with common domain for all n P N and k P t1, . . . , m´ 1u.

(iii) Using Arzelà-Ascoli, recursively pass to subsequences so that

Gnk
nÑ8
ÝÝÝÑ Gk and Gnk

1 nÑ8ÝÝÝÑ gk

for some Gk : rtk, tk`1s Ñ Ck Ă Rd and a-Lipschitz gk : rtk, tk`1s Ñ Rd such that

G1k “ gk.

(iv) Check that the uniform limit β of the concatenations

βn “ pG1 ˚ ¨ ¨ ¨ ˚ pGm

is indeed in C.

The main construction (i)–(iii) is carried out in §3.2.1. The verification (iv) of the con-

structed path’s suitability appears in §3.2.2.

Finally, in §3.3, we show that a certain smoothness condition is preserved under the op-

eration of taking uniform limits. It then follows that if we modify our choice of C to

include only paths satisfying the smoothness condition, then the same construction yields

a “smooth” path whose length is minimal over all such paths. We will restate our result as

Corollary 3.3.11 at the end of this Chapter.

3.2.1 Construction of the length-minimizer β

Assume that C “ Cpa, M , u, v, Uq is nonempty. Then inf
cPC

`pcq ă 8, and there exists a

sequence in C of paths γn : r0, bns Ñ X such that

`pγnq Œ inf
cPC

`pcq
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as n Ñ 8. In this subsection, we will construct a path β whose length attains this infi-

mum.

For each γn : r0, bns Ñ X , there exists a cube path pQnkq
mn´1
k“1 , mn ď M , for γn with

breakpoints ptpnqk q
mn
k“1. Since the bn “ `pγnq are decreasing, we have bn ď `pγ1q ă 8.

By Lemma 2.5.10, there exists a stable cube path pQkqm´1
k“1 ,m ďM , for pγnq8n“1, so that

γn
`

rt
pnq
k , tpnqk`1s

˘

Ă Qk

for all k P t1, . . . , m ´ 1u and n P N. As is spelled out by Lemma 3.2.4, since the bn are

bounded above, there exist 0 “ t1 ă ¨ ¨ ¨ ă tm ă 8 and changes of variableLnk : rtk, tk`1s Ñ

rt
pnq
k , tpnqk`1s such that |Lnk

1| ď 1.

EachQk is the image of some cubeCk Ă Rd under the quotient map p definingX . Write

γnk “ γn
ˇ

ˇ

rt
pnq
k

, tpnq
k`1

s
, Gnk “ p´1

k γnkL
n
k . (3.1)

Claim 1. The set
8
ď

n“1

m´1
ď

k“1

ImagepGnk
1q Ă Rd is bounded.

Proof of Claim 1. Write ρ “ minm´1
k“1 ptk`1 ´ tkq, and observe that

|Gnk
1ptq| ď lim

sÑt

|Gnkpsq ´G
n
kptq|

|s´ t|
ď
`pγ1q

ρ

because for all s, t P rtk, tk`1s, we have

|Gnkpsq ´G
n
kptq| “ dpγnkL

n
kpsq, γ

n
kL

n
kptqq ď `pγnkL

n
k

ˇ

ˇ

rs, tsq “
`pγnkL

n
kq

tk`1 ´ tk
|s´ t|

ď
`pγ1q

ρ
|s´ t|.
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Now, for each k P t1, . . . , m ´ 1u, the collection of functions tGn1
1 : n P Nu is uniformly

bounded, and by Lemma 3.2.5 it is equicontinuous, so by the corollary to the Arzelà-Ascoli

Theorem (3.2.6), we can recursively pass to subsequences so that for each k, the uniform

limit of Gnk
1 exists; call it gk.

Since Gn1 is differentiable, Gn1 p0q
”
ÝÑ p´1

1 puq, and Gn1
1 Ñ g1, by Theorem 3.2.8, the Gn1 have

a uniform limit G1 : rt1, t2s Ñ C1, and G1
1 “ g1.

Claim 2. pGn1 pt1qq converges in C1.

Proof of Claim 2. Write

Pn :“ Gn1 pt1q P BC1, P :“ G1pt1q, Rn :“ Gn2 pt1q P BC2,

and

x “ ppxq for x P C1 \ C2.

We have

pGn1 pt2q “ Pn P BQ1 and pGn2 ps2q “ Rn P BQ2,

so BQ1 X BQ2 ‰ ∅. It follows from property (2) of Definition 2.3.7 that there exists a

shared face F of BQ1 and BQ2 which is the image under p of faces Ek of Ck pk “ 1, 2q,

and an isometry ϕ : E1 Ñ E2 such that x “ y ô ϕpxq “ y for x P E1 and y P E2.

Since Pn “ Rn, we have Rn “ ϕpPnq, and we know Pn Ñ P because Gn1 Ñ G1. Thus

by continuity,

lim
nÑ8

Rn “ lim
nÑ8

ϕpPnq “ ϕpP q.

Applying Theorem 3.2.8 again yields a differentiable function G2 “ lim
nÑ8

Gn2 with G2
1 “

g2.

Claim 3. The concatenation pG1 ˚ pG2 is a path in Q1 YQ2.
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Proof of Claim 3.

pG1pt1q “ lim
nÑ8

pGn1 pt1q “ lim
nÑ8

Pn “ lim
nÑ8

Rn “ lim
nÑ8

pGn2 pt1q “ pG2pt1q.

Repeating these steps, we obtain a path

β :“ pkG1 ˚ ¨ ¨ ¨ ˚ pkGm : rt1, tms Ñ X, β
ˇ

ˇ

rtk , tk`1s
“ pkGk,

and lim
nÑ8

γn “ β by construction.

3.2.2 Verification that β is a length-minimizer

We now establish Theorem 3.2.2 by proving first that `pβq is minimal, and then that β P

C.

Since

ˇ

ˇ`pγnk q ´ `
`

β
ˇ

ˇ

rtk , tk`1s

˘
ˇ

ˇ “ |`ppkG
n
kq ´ `ppkGkq| ((3.1) and Lemma 2.1.6)

“ |`pGnkq ´ `pGkq| (each pk is an isometry)

“

ˇ

ˇ

ˇ

ˇ

ż

rtk , tk`1s

|Gnk
1| ´

ż

rtk , tk`1s

|Gk
1|

ˇ

ˇ

ˇ

ˇ

ď

ż

rtk , tk`1s

ˇ

ˇGnk
1 ´G1k

ˇ

ˇ

ď ptk`1 ´ tkq d8pG
n
k
1, G1kq

nÑ8
ÝÑ 0

for each k P t1, . . . , m´ 1u, we have

`pβq “
m´1
ÿ

k“1

`pβ
ˇ

ˇ

rtk , tk`1s
q “ lim

nÑ8

m´1
ÿ

k“1

`pγnk q “ lim
nÑ8

`pγnq “ inf
cPC

`pcq
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After reparametrizing so that β is unit speed, the verification that β P C is routine:

• Since γnp0q “ u, γnpbnq “ v, and γ1np0q “ U for each n P N, we have βpt1q “ u,

βptmq “ v, and β1pt1q “ U .

• β is a-C1,1 with respect to ptkqmk“1 and pQkqm´1
k“1 :

To verify that β
`

rtk, tk`1s
˘

Ď Qk for each k P t1, . . . , m ´ 1u, observe that for

each t P rtk, tk`1s, since βptq “ lim
nÑ8

pGnkptq andGnkptq P C
k, we have βptq P Qk “

Qk.

We now show that eachGk 1 is a-Lipschitz. By Lemma 3.2.9, it is enough to show

that each Gnk
1 “ pp´1

k γnkL
n
kq
1 is a-Lipschitz, which follows immediately from the

inequality

ˇ

ˇGnk
1psq ´Gnk

1ptq
ˇ

ˇ “
ˇ

ˇ

`

pp´1
k γnk q

1Lnk
˘

psq Lnk
1psq ´

`

pp´1
k γnk q

1Lnk
˘

ptq Lnk
1ptq

ˇ

ˇ

“ |Lnk
1|
ˇ

ˇpp´1
k γnk q

1
`

Lnkpsqq ´ pp
´1
k γnk q

1
`

Lnkptq
˘
ˇ

ˇ

ď
ˇ

ˇpp´1
k γnk q

1
`

Lnkpsq
˘

´ pp´1
k γnk q

1
`

Lnkptq
˘ˇ

ˇ

ď a|Lnkpsq ´ L
n
kptq|

ď a|s´ t|.

This concludes the proof of Theorem 3.2.2.

3.2.3 Lemmas used in existence proof

Lemma 3.2.3. A nonexpanding linear map L : ra, bs Ñ rc, ds is Lipschitz with constant

|L1| ď 1.

Lemma 3.2.4. For each n P N, let
`

t
pnq
k

˘m

k“1
be a subdivision of

“

0, tpnqm
‰

, where tpnqm ă S

for some fixed S ă 8. Then there exist T ă mS, a subdivision ptkqmk“1 of r0, T s, and
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nonexpanding linear surjections Lnk : rt1, tks Ñ
“

t
pnq
k , tpnqk`1

‰

.

Proof. Let

ψk “ sup
nPN

`

t
pnq
k`1 ´ t

pnq
k

˘

P p0, Ss

for k “ 0, . . . , m. Write s´1 “ 0 and sk “
řk
i“0 ψ

i for k “ 0, . . . , m. Take

Lnkptq “ pt´ skq
t
pnq
k`1 ´ t

pnq
k

ψk
` t

pnq
k .

Then
ˇ

ˇLknptq ´ L
k
npuq

ˇ

ˇ ď |t´ u|

for each t, u P rsk, sk`1s and Lkn1 ď 1 for each k and n.

Lemma 3.2.5. Let a ą 0. A collection of a-Lipschitz functions from a metric space X to a

metric space Y is equicontinuous.

Proof. For any f P F , x P X , and ε ą 0,

dpfpxq, fpyqq ď a dpx, yq ă ε

whenever dpx, yq ă ε{a.

Theorem 3.2.6 (Arzelà-Ascoli: [31], Theorem 45.4). Let X be a compact space. Then F Ď

CpX , Rdq has compact closure under the uniform metric d8 iff F is equicontinuous and

uniformly bounded.

Corollary 3.2.7 ([31], Exercise 45.3). If F Ď CpX , Rdq is equicontinuous and pointwise

bounded under the uniform metric d8, then every sequence in F has a subsequence that

converges in
`

CpX , Rdq, d8
˘

.
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Proof. Assume there is a sequence E :“ pfnq
8
n“1 in F that has no convergent subsequence.

Then E has no limit points, otherwise there would exist some f P CpX , Rdq such that

fnk Ñ f for some subsequence pfnkq
8
k“1. Since each fn is therefore an isolated point of E,

there exist εn ą 0 for each n P N such that

E X Bpfn; εnq “ tfnu. (3.2)

The set E is closed in
`

CpX , Rdq, d8
˘

, hence compact. Then finitely many Bpfn; εnq suffice

to cover E, so one of these balls contains infinitely many fn, which contradicts (3.2).

Theorem 3.2.8. Let pfnq8n“1 be a sequence of C1 paths ra, bs Ñ Rd such that
`

fnpt0q
˘8

n“1

converges for some t0 P ra, bs. If pf 1nq8n“1 converges uniformly, then pfnq8n“1 converges

uniformly and
`

lim
nÑ8

fn
˘1
“ lim

nÑ8
f 1n.

Lemma 3.2.9. The uniform limit of a-Lipschitz functions is a-Lipschitz.

Proof. If f is the uniform limit of functions fn : X Ñ Y between metric spaces X , Y , and

each fn is a-Lipschitz, then

dpfpsq, fptqq ď dpfpsq, fnpsqq ` dpfnpsq, fnptqq ` dpfnptq, fptqq ď a dps, tq ` ε

for all ε ą 0, s, t P X , and n sufficiently large.

3.3 Smoothness at breakpoints

In the above argument, admissible paths are required to be piecewise smooth, but may

have arbitrary angle where two cubes meet. We now require our paths to be smooth at their

breakpoints, in the sense of having zero turning angle (Definition 2.1.25) where two cubes

meet. The key fact needed to apply the same argument as above in this case is that the

property of having zero turning angle at a point is preserved under uniform limits.
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Remark. The link at an arbitrary point p in a geodesic space X can be regarded as the

collection of geodesic segments issuing from p modulo subset containment [8]. In this

sense, the link at p is the space of directions at p, and endowing linkppqwith the angle metric

makes it a metric space. Indeed, we have already recorded the triangle inequality for this

space as Lemma 2.1.20. We have chosen to omit the definition of linkppq given in [8] for

arbitrary p, and will present only those facts which are essential to our arguments. The

remarks in this subsection are purely explanatory, and our proofs do not depend on them.

Any ray or path γ with initial point p for which there exists a geodesic segment in X

making angle 0 with γ is represented by an element of linkppq. We may then say that γ has

an initial direction. Two rays or paths issuing from p, not necessarily geodesic, will be said

to have the same direction if the angle between them exists and is 0. (For simplicity, we will

refer only to “paths,” rather than “rays or paths,” from this point forward.) The relation of

having the same direction is an equivalence relation on the set of paths issuing from p that

have a direction. The equivalence classes under this relation will be called directions.

If γ is differentiable with nonzero derivative in coordinates at its initial point, in the sense

that pϕγq1paq ‰ 0 for some isometric map ϕ into RN whose domain contains the image of

γ, then γ clearly has a direction. A vector V P RN with direction the same as that of ϕγ,

where γ is a path, and ϕ is an isometry of a cell containing γ, will be called a pre-direction

for γ. Clearly, a pre-direction for γ depends on the choice of ϕ. But if ϕ is fixed, and γ has

the same direction as some geodesic in X , then

(i) the pre-directions for a given path γ are determined up to a positive scalar multiple,

and

(ii) measuring angles between a pair of paths in a cell of X is equivalent to measuring

the angles between a corresponding pair of pre-directions under ϕ.

Definition 3.3.1. Let X be a geodesic space, and let α and β be curves in X with common

initial point x. If =pα, βq “ 0, the curves α and β have the same (initial) direction. For
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y P X r txu, the curve α and the geodesic segment rxys have the same (initial) direction if

there exists a parametrization λ of rxys such that =pα, λq “ 0. IfX “ RN and V P RNrt0u,

the curve α and the vector V have the same (initial) direction provided that there exists

a parametrization ν of the path with direction V issuing from x such that =pα, νq “ 0.

Define =prxys, βq, =pV , βq, etc., analogously.

Definition 3.3.2. Let Qλ be a cube in a cube complex with defining projection p, say with

ppCλq “ Qλ for disjoint cubes Cλ Ă RN , and write ϕ “ p´1
λ . A vector V P RN r t0u is an

(initial) pre-direction for a path γ : ra, bs Ñ Q if the path ϕγ is differentiable at a, and ϕγ

and V have the same direction.

Remark. A path γ in a geodesic space X that passes through a point γpt0q “ p can be

regarded as the concatenation of the path γ
ˇ

ˇ

rt0´ε, t0s
, whose reverse path we denote by γ´,

with the path

γ` :“ γ
ˇ

ˇ

rt0, t0`εs
.

If γ is a smooth path and X is a smooth manifold, then for any w P X such that

=pγ´, rpwsq “ π,

i.e., the turning angle of the concatentation γ
ˇ

ˇ

rt0´ε, t0s
˚ rpws is 0, we have

=prpws, γ`q “ 0.

This implication does not hold in a general geodesic space, even if γ is a geodesic. For

example, if γ is a geodesic path passing through a point p in a square complex such that

the link at p has total angle measure m such that 2π ă m ă 3π, then there exists a w such

that

=pγ´, rpwsq “ π
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and

=prpws, γ`q “ θ

for any θ P r0, m´ 2πs.

When discussing the directional behavior of a path passing through a point in a cube

complex, we will therefore keep track of two geodesic segments, one making angle 0 with

γ´, and one making angle 0 with γ`. This convention enables us to distinguish between

paths which are so-called bifurcating geodesics, that is, geodesic paths that have the same

initial direction, but distinct tails (e.g., Figure 1.4). Such a pair of geodesic segments—a

special case of what we will call a hinge—acts as a canonical choice of integral curve, i.e. a

path having prescribed approach and departure directions at a point p.

Definition 3.3.3. The concatenation α ˚ β of two nondegenerate paths α : ra, bs Ñ X and

β : rb, cs Ñ X in a length space X is a hinge with hinge point p :“ αpbq “ βpbq. Its (hinge)

angle is =pα, βq.

Definition 3.3.4. Let α, α1, α2, ¨ ¨ ¨ : ra, bs Ñ X and β, β1, β2, ¨ ¨ ¨ : rb, cs Ñ X be paths such

that each of α ˚ β, α1 ˚ β1, α2 ˚ β2, . . . is a hinge. If αn Ñ α and βn Ñ β, where α and β are

nondegenerate paths, we say the sequence of hinges αn ˚ βn converges to the hinge α ˚ β,

and we write αn ˚ βn
˚
ÝÑ α ˚ β. (It is automatic that αpbq “ βpbq, so that α ˚ β is indeed a

hinge.)

We now turn to the task of showing that if the angles of hinges αn ˚ βn are each π, and if

the hinges converge, αn ˚ βn
˚
ÝÑ α ˚ β, then the angle of α ˚ β is also π. This is trivial when

the hinge points lie in the interior of a single cube. A bit more work is required for the

case we are concerned with, namely, the case that all hinge points are breakpoints of the

cube complex X , with the αn all lying in one cube Q1, and the βn all lying in another cube

Q2.

Our primary tool for analyzing the behavior of angles under limits is Theorem 2.1.28,
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`

wn ´ Fnpbq
˘ p - `

rαnpbqppwnqs
˘

`

rppwnqαnpbqs ˚ rβnpbqppynqs
˘ lim-

-

rppwqαpbqs ˚ rβpbqppyqs
=

Theorem 2.1.28
- π

`

yn ´Gnpbq
˘ p- `

rβnpbqppynqs
˘

-

pp´1
2 βnq

|||
|||
|||
|||

p
- pβnq

|||
|||
|||
|||

pαn ˚ βnq
lim

-
-

α ˚ β
=

- π

triangle
inequality

?

pp´1
1 αnq

sa
m

e
di

re
ct

io
ns

|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
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p
- pαnq

-

Figure 3.3: Schematic for Lemma 3.3.7. (The proof begins with the green nodes.)

which says that if ranbns ˚ rbncns
˚
ÝÑ rabs ˚ rbcs, then the hinge angle of rabs ˚ rbcs is no

less than the lim sup of the hinge angles of ranbns ˚ rbncns. In order to apply this to generic,

not necessarily geodesic hinges, we will pull back to pre-directions, which can be projected

back into our cube complex to obtain directions for αn and βn. Theorem 2.1.28 can then be

applied. The schematic diagram given in Figure 3.3 may serve to clarify the process.

It is in choosing pre-directions that a certain technical issue must be shown to be avoidable:

we must make sure that it is possible to choose nondegenerate pre-directions for the “legs”

of the various hinges, otherwise the angle between the corresponding directions will be

undefined. We write pk “ p
ˇ

ˇ

Ck
as usual, where p is the defining projection for X , and

consider the pullbacks Fn “ p´1
1 αn and Gn “ p´1

2 βn (n P N), along with the limits

F “ lim
nÑ8

Fn, G “ lim
nÑ8

Gn, α “ lim
nÑ8

αn, β “ lim
nÑ8

βn.
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H
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Figure 3.4: Illustration of the hypotheses of Lemma 3.3.5.

In Lemma 3.3.6, we establish that a convergent sequence of nondegenerate geodesic pre-

directions for the αn (and βn) can be constructed if it is known that each of the F 1npbq

(and G1npbq) is nonzero. As a preliminary to Lemma 3.3.6, we prove a technical geometric

convergence result, Lemma 3.3.5.

Lemma 3.3.5. Let H be a codimension-1 hyperplane in Rm, i.e. a set of the form a ` P ,

where a P Rm and P is a pm´ 1q-dimensional linear subspace of Rm (m ě 2). Let pxnq8n“1

be a sequence in an open halfspace of Rm bounded by H such that xn Ñ x R H . Let

pvnq
8
n“1 be a sequence of vectors in Rm such that vn Ñ v, x ` sv P H for some s ą 0, and

xn ` snvn P H for some sn ą 0 (n P N). Then the distances sn{|vn| from xn to H along vn

converge to the distance s{|v| from x to H along v.

Proof. LetN be a unit normal vector forH , and let c P R such thatH “ tz P Rm : z ¨N`c “

0u. For simplicity, assume c “ 0.

We know x lies in the same open halfspace bounded by H as do the xn (n P N) since

xn Ñ x R H . Since s ą 0 and sn ą 0 (n P N),

xv, Ny “ ´1
sxx, Ny and xvn, Ny “ ´ 1

sn
xxn, Ny pn P Nq

all have the same sign.

The distance from an arbitrary point y P Rm to H along an arbitrary vector u P Rm is

Dpy, uq “
xy, Ny
xu, Ny

.
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This function is continuous on each component of Rm ˆ pRm r tx¨, Ny “ 0uq. Thus

Dpxn, vnq Ñ Dpx, vq.

Lemma 3.3.6. Let C Ă RN be a cube. Let F , F1, F2, ¨ ¨ ¨ : ra, bs Ñ C Ă RN be paths that

are differentiable at a with nonzero derivative at a. If Fnpaq Ñ F paq and F 1npaq Ñ F 1paq for

each n, then there exist w, w1, w2, ¨ ¨ ¨ P C such that

wn Ñ w, Fnpaq ‰ wn, F paq ‰ w,

wn ´ Fnpaq has the same direction as Fn, and w ´ F paq has the same direction as F .

Proof.

Claim: The (nonzero) distances rn from Fnpaq to BC rEn along the rays tFnpaq ` sF 1npaq :

s ě 0u converge to the nonzero distance r from F paq to BCrE along the ray tF paq`sF 1paq :

s ě 0u.

Proof of Claim. Let E be the union of open faces intS of C such that S contains F paq,

and let En be the union of open faces intS of C such that S contains Fnpaq. If Fnpaq R

VertC, then Fnpaq P intS for some k-dimensional (k ě 1) face S of C, and 0 ă

dpFnpaq, BSq “ dpFnpaq, BC r Enq. If Fnpaq P VertC, then 1 “ dpFnpaq, BC r Enq. In

either case, dpFnpaq, BCrEnq ą 0. Similarly, dpF paq, BCrEq ą 0. Thus the distances

along the specified rays to BC r En (BC r E respectively) can be no smaller. Take

rn “ Dn{|F
1
npaq|, where Dn ą 0 is the distance along F 1npaq from Fnpaq to BC r En,

and r “ D{|F 1paq|, where D ą 0 is the distance along F 1paq from F paq to BC r E.

Now by Lemma 3.3.5, rn Ñ r.

Choose

w “ F paq ` rF 1paq, wn “ Fnpaq ` rnF
1
npaq.
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Then

=
`

w ´ F paq, F
˘

“ =
`

rF 1paq, F 1paq
˘

“ 0,

=
`

wn ´ Fnpaq, Fn
˘

“ =
`

rnF
1
npaq, F

1
npaq

˘

“ 0

by Lemma 2.1.19, and wn Ñ w ‰ F paq.

Lemma 3.3.7 (Preservation of smoothness at breakpoints under uniform limits). Let Q1,

Q2 be cubes in a nonpositively curved cube complex X , and let pi : RN Ą Ci Ñ Qi be an

isometry (i “ 1, 2). Let α, α1, α2, ¨ ¨ ¨ : ra, bs Ñ Q1 and β, β1, β2, ¨ ¨ ¨ : rb, cs Ñ Q2 be paths

parametrized at constant speed. Suppose:

• each of α ˚ β, α1 ˚ β1, α2 ˚ β2, . . . is a hinge,

• αn ˚ βn ˚
ÝÑ α ˚ β,

• =pαn, βnq “ π for all n,

• each of F :“ p´1
1 α, Fn :“ p´1

1 αn, G :“ p´1
2 β, Gn :“ p´1

2 βn is differentiable at b with

nonzero derivative at b for all n,

• F 1npbq Ñ F 1pbq, and G1npbq Ñ G1pbq

Then =pα, βq “ π.

Fn

Gn

wn xn

ynzn

RN

X

an

bn

xnwn yn

Fn

Gn

wn xn

ynzn

RN

X

an

bn

xnwn yn

Proof. Using Lemma 3.3.6 and the fact that each of p1 and p2 is an isometry (hence angle-

preserving), we obtain pre-directionsw´F pbq, w1´F1pbq, w2´F2pbq, ¨ ¨ ¨ P C1 forF , F1, F2, . . . ,

and pre-directions y´Gpbq, y1´G1pbq, y2´G2pbq, ¨ ¨ ¨ P C2 for G, G1, G2, . . . , respectively,
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such that wn Ñ w ‰ F pbq and yn Ñ y ‰ Gpbq. By Lemma 2.1.20,

=
`

rαnpbq p1pwnqs, rβnpbq p2pynqs
˘

´=
`

αn, βn
˘

ď =
`

rαnpbq p1pwnqs, αn
˘

`=
`

βn, rβnpbq p2pynqs
˘

“ 0,

so

=
`

rαnpbq p1pwnqs, rβnpbq p2pynqs
˘

“ =pαn, βnq “ π.

Noting that

rαnpbq p1pwnqs Ñ rαpbq p1pwqs ‰ tαpbqu, rβnpbq p2pynqs Ñ rβpbq p2pyqs ‰ tβpbqu,

and that rαnpbq p1pwnqs ˚ rβpbnq p2pynqs is a hinge for each n, we apply Theorem 2.1.28 to

get

=
`

rαpbq p1pwqs, rβpbq p2pyqs
˘

“ π.

Now Lemma 2.1.20 yields

=
`

rαpbq p1pwqs, rβpbq p2pyqs
˘

´=
`

α, β
˘

ď =
`

rαpbq p1pwqs, α
˘

`=
`

β, rβpbq p2pyqs
˘

“ 0,

so =pα, βq “ π.

Definition 3.3.8. We say an a-C1,1pMq path γ is smooth at breakpoints if there exists a

cube path pQkq for γ with breakpoints ptkq such that γ has zero turning angle at γptkq for

all k.
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Definition 3.3.9. For u, v in X such that u ‰ v, U P linkpuq, a ą 0, and M P N, write

C0pa, M , u, v, Uq “ tγ P Apu, v, Uq : γ is a-C1,1pMq and smooth at breakpointsu.

Theorem 3.3.10. For any sequence pβnq8n“1 of elements of C0 “ C0pa, M , u, v, Uq with

uniformly bounded lengths, there exist reparametrizations pβn of the βn with a common

domain such that some subsequence ppβniq8i“1 has uniform limit in C0.

Corollary 3.3.11. If C0 is nonempty, then C0 contains a path β of minimal length, i.e.

`pβq “ inf
cPC0

`pcq.

Proof of Theorem 3.3.10. Let pβnq8n“1 in C0 be a sequence with uniformly bounded lengths

`pβnq. By Lemma 2.5.10, there exists a stable cube path Q :“ pQkq
m´1
k“1 , m ďM , for pβnq8n“1.

As in subsection 3.2.1, we may reparametrize the βn to obtain a common domain r0, tms,

tm ă 8 (the uniform boundedness of the lengths `pβnq is used here), and a subdivision 0 “

t1 ă ¨ ¨ ¨ ă tm such that Q is a stable cube path for the reparametrized βn with breakpoints

ptkq
m
k“1. Write βnk :“ βn

ˇ

ˇ

rtk , tk`1s
and βk :“ β

ˇ

ˇ

rtk , tk`1s
for k P t1, . . . , m´ 1u. We verify that

β is smooth at breakpoints.

If limnÑ8 `pβ
n
1 ˚ ¨ ¨ ¨ ˚ β

n
k q Ñ 0, say βn

`

rt1, tk`1s
˘

“ tpu, then we may reparametrize β so

that β´1ppq “ t0u and replace Q with the cube path pQiqm´1
i“k`1. Then p is not a breakpoint

for the reparametrized β, and can be ignored in the present verification. The case that

limnÑ8 `pβ
n
k ˚ ¨ ¨ ¨ ˚ β

n
m´1q Ñ 0 can be dealt with similarly.

For each k such that limnÑ8 `pβ
n
k q ‰ 0 we have `pβkq ‰ 0 by the Dominated Convergence

Theorem and Lemma 2.2.8, and we can pass to a subsequence so that `pβnk q ‰ 0 for

each n. If limnÑ8 `pβ
n
k q ‰ 0 and limnÑ8 `pβ

n
k`1q ‰ 0 then, possibly after passing to

subsequences, βk ˚ βk`1 and each βnk ˚ β
n
k`1 is a hinge (in particular, each of βnk , βnk`1,

βk, βk`1 is nondegenerate). Again as in subsection 3.2.1, we may pass to subsequences
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so that the derivatives in coordinates of the βnk converge uniformly to the derivative in

coordinates of βk, and by Lemma 3.3.7, =pβk, βk`1q “ π.

We claim that βk ˚ ¨ ¨ ¨ ˚ βk`1 is smooth at breakpoints for each k such that `pβkq ‰ 0,

`pβk`1q Ñ 0, and `pβk`2q ‰ 0. Write

τ rti, tjs :“ τpβi ˚ ¨ ¨ ¨ ˚ βjq,

τnrti, tjs :“ τpβni ˚ ¨ ¨ ¨ ˚ β
n
j q,

τi :“ τpβiq,

τni :“ τpβni q.

Using Lemma 3.1.5 and the Dominated Convergence Theorem (note that |Gnk
2ptq| ď a

almost everywhere by Rademacher’s Theorem, 2.2.9), we have

τnk “

ż tk`1

tk

|Gnk
2|

nÑ8
ÝÝÝÑ

ż tk`1

tk

|Gk
2| “ τk,

where Gnk :“ p´1
k βnk . Since `pβk`1q Ñ 0, we have

τnk`1
nÑ8
ÝÝÝÑ 0.

Using Corollary 2.2.6 and the fact that each βn :“ βn1 ˚ ¨ ¨ ¨ ˚ β
n
m is smooth at breakpoints,

τnrtk, tk`3s “ τnk `
`

π ´=pβnk , βnk`1q
˘

` τnk`1 `
`

π ´=pβnk`1, βnk`2q
˘

` τnk`2

“ τnk ` τ
n
k`1 ` τ

n
k`2

nÑ8
ÝÝÝÑ τk ` τk`2.
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By lower semicontinuity of total curvature (Lemma 2.2.5),

τk ` pπ ´=pγk, γk`2qq ` τk`2 “ τ rtk, tk`3s

ď lim
nÑ8

τnrtk, tk`3s “ τk ` τk`2.

Thus =pγk, γk`2q “ π. A similar argument shows that if `pβkq ‰ 0, `pβk`1 ˚ ¨ ¨ ¨ ˚ βk`jq “ 0,

and `pβk`j`1q ‰ 0, then =pγk, γk`j`1q “ π.
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Chapter 4

Numerical results

Having established the existence of a solution to our version of the Markov-Dubins prob-

lem with free terminal direction for a broad category of cube complexes X , we will focus

in the remainder of this work on the case that X is a square complex.

In the first section of this Chapter, we generalize a result due to Jacobs and Canny [22]

which characterizes solutions to the Markov-Dubins problem with specified initial and

terminal direction in a planar region with polygonal obstacles. (Note that a planar region

from which polygonal regions have been deleted is indeed a nonpositively curved square

complex, which of course fails to be CAT(0) if the resulting region is not simply connected.)

Perhaps unsurprisingly, in light of Dubins’ characterization, Jacobs and Canny found that

solutions are necessarily made up of geodesic segments and arcs of circles. We find that

the same is true in an arbitrary nonpositively curved square complex. It is then immediate

that the same characterization holds for solutions of the Markov-Dubins problem with free

terminal direction, since any solution to the problem without specified terminal direction

is a solution to some problem with the terminal direction prescribed.

Section 4.2 gives the details for an algorithm which numerically determines the solution

in the case that it is a CL path, that is, made up of a path of constant curvature κ ą 0,
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followed by a geodesic path. As Kreĭn and Nudel’man note in [24], the solution in the

plane to the problem with free terminal direction is always of this form. We do not address

the question of determining when and if there exist solutions which are not CL paths.

However, it is plain that for certain choices of nonpositively curved square complex X ,

boundary conditions u, v, U , and curvature constant κ ą 0, no admissible path whatsoever

exists,1 and in Chapter 5, we will encounter spaces homeomorphic to R2 which contain

unbounded regions inaccessible by CL paths with prescribed u, v, U , and κ. (Recall that

our existence result claims only that a length-minimizer exists when the set C of admissible

paths is nonempty.) We will return to the problem of determining a sufficient condition for

the existence of an arbitrary admissible path in future work.

4.1 Characterization of length-minimizers

Theorem 4.1.1 ([22], Corollary to Theorem 2). Let Ω Ă E2 be a finite union of polygons.

Let u, v P E2, U , V P S1, and a ą 0. Let

CFP :“ CFPpa, Ω, u, v, u, vq

be the collection of paths γ : r0, bγs Ñ Ω such that |γ1| ” 1, γ1 is a-Lipschitz, γp0q “ u,

γpbγq “ v, γ1p0q “ U , and γ1pbγq “ V . Then

1) CFP is empty or contains a length-minimizing element.

2) Every length-minimizer is C1 and is made up of finitely many pieces, each a line seg-

ment or an arc of a circle of radius 1{a, and meets BΩ in finitely many points and/or

line segments.

Theorem 4.1.2. Let u, v be distinct points of a nonpositively curved square complex X , let

U P linkpuq, a ą 0, and M P Zě0, Any length-minimizing element of C “ Cpa, M , u, v, Uq

1E.g., retrieving one’s car from a parking garage without using the reverse gear.
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is made up of finitely many geodesic segments and/or arcs of a metric circle of radius 1{a

(i.e., the image of the arc under a distance-preserving map into E2 is an arc of a circle of

radius 1{a), and meets Xp1q in finitely many points and/or geodesic segments.

Proof. Suppose γ P C is a length-minimizer, i.e. `pγq “ infcPC `pcq, and let ptiqmi“1, pQiqm´1
i“1

be a subdivision and cube path as in the definition of C. Without loss of generality, we may

assume each Qi has dimension 2. (For example, a 1-cell Qi followed by a 2-cell Qi`1 can

be replaced by a 2-cell Ri ‰ Qi`1 since Qi`1 Č Qi and X is the union of its 2-cells.)

For i P t1, . . . , m´ 1u, suppose γi :“ γ
ˇ

ˇ

rti, ti`1s
has initial position γipsiq “ ui and terminal

position γiptiq “ vi. We show that γ1 is as claimed. Let e be an isometry from Q0 onto a

square in E2. It is clear that

eγ1 P CFP :“ CFPpa, epQ1q, epu1q, epv1q, peγ1q
1ps1q, peγ1q

1pt1qq.

Since CFP ‰ ∅, by Theorem 4.1, CFP contains a length-minimizing element β1. Take the

domain of β1 to be H1 “ rrt1, rt2s, where rt2 “ t2, and set rti “ ti for i P t3, . . . , mu. Assume

for a contradiction that `peγ1q ą `pβ1q, i.e. eγ1 is not a length-minimizing element of CFP.

Observe that

• rγ :“ e´1β1 ˚ γ2 ˚ ¨ ¨ ¨ ˚ γm´1 is a-C1,1 with respect to prtiq and pQiq.

• e´1β1 has the same boundary conditions (position of, and direction at endpoints) as

γ1.

• =p´e´1β1, γ2 ˚ ¨ ¨ ¨ ˚γm´1q “ =p´γ1, γ2 ˚ ¨ ¨ ¨ ˚γm´1q “ π since´β1 and´eγ0 have the

same direction at epv1q.

It follows that rγ P C. But then, since γ is a length-minimizing element of C,

`peβ1q ` `pγ2 ˚ ¨ ¨ ¨ ˚ γm´1q “ `prγq ě `pγq “ `pγ1q ` `p`pγ2 ˚ ¨ ¨ ¨ ˚ γm´1q,
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which contradicts that `peβ1q ă `pγ1q. Thus eγ1 is indeed a length-minimizing element of

CFP, so by Theorem 4.1, eγ1 is made up of finitely many line segments and arcs of circles of

radius 1{a. Since e´1 takes line segments to geodesics in X , the path γ1 is as required, and

similar reasoning shows that each of γ2, . . . , γm´1 is as well.

4.2 Computation of length-minimal CL paths

By a CL path in a geodesic space, we mean the concatenation of a path of constant curva-

ture followed by a geodesic path, with turning angle 0 at the breakpoint. This terminology

is based on Dubins’ 1957 paper, in which a piecewise C2 path made up of circular arcs and

line segments is described by a word in the letters C (for circle) and L for line segment. In

this section, we will state and justify an algorithm for approximating the shortest CL path

in a nonpositively curved square complex with prescribed endpoints and initial direction.

The key idea is to reduce the problem to that of finding a root of a continuous function of

one variable.

Although the shortest curvature-constrained path satisfying such boundary conditions

need not be a CL path, and indeed may not exist at all, our algorithm provides a numerical

solution to the Markov-Dubins problem with free terminal direction in a nonpositively

curved square complex in the case that the solution is a CL path.

Let us outline the algorithm. The verification of its effectiveness will be given as Corollary

4.2.6.

• Let u and v be the desired initial and terminal position, and let U be the desired

initial direction. Let Σ be one of the two oriented curves of constant curvature a ą 0

tangent to U at u. Let s be the length of an arc of Σ beginning at u and following the

orientation of Σ. Let P psq be the endpoint of this arc, and let T psq be the tangent to Σ

at P psq. (See Figure 4.1.)



www.manaraa.com

CHAPTER 4. NUMERICAL RESULTS 79

THsL
U

u

v

PHsL

v

Figure 4.1: Determining a CL path by finding a root of Θ.

• The directed angle Θpsq from the tangent T psq to the geodesic rP psqvs in X can be

numerically computed by using an algorithm due to Chepoi and Maftuleac [11] to

determine a decomposition of rP psqvs into line segments, each contained in a single

2-cell of X ,

rP psqvs “ rP psqw1s ˚ ¨ ¨ ¨ ˚ rwmvs, wk “ wkpsq P VertpXq. (4.1)

Then the directed angle from T psq to rP psqvs is equal to the directed angle from T psq

to rP psqw1s.

• If there exists a CL path γ : ra, bs Ñ X from u to v with initial direction U , we must

have

Θpsq “ 0

for some s P ra, bs. Since Θ is a continuous, piecewise monotone function (Theorem

4.2.3), we can find all such values of s on a finite segment of Σ by repeatedly applying

any algorithm guaranteed to find roots of a continuous function on an interval.

Noting that, in some cases, a curve Σ of constant curvature in a nonpositively curved

square complex is a proper ray, we must restrict our attention to an initial segment

of Σ having finite length.
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Figure 4.2: (LEFT:) A subcomplex (tan and green) of the space X5 (yellow and pink)
described in Chapter 5, and (RIGHT:) its embedding as a polygon P in E2.

The fact that a geodesic in X can be decomposed as claimed in (4.1) can be seen as follows.

Given the endpoints of a geodesic rxys to be determined, Chepoi and Maftuleac show

(Theorem 4.2.1) how to determine a geodesic rxys in an NPC square complex between two

given endpoints by first constructing an isometry that maps a subcomplex ofX containing

rxys onto a planar polygon P isometrically embedded in E2 (Figure 4.2), and then applying

Lee and Preparata’s funnel algorithm to the images of x and y in P (Figures 4.3–4.5).

Indeed, P is a monotone polygonal chain, and consequently can be triangulated so that

the dual graph of the triangulation is homeomorphic to an interval. Thus Lemma 4.2.2

immediately implies the existence of a decomposition as in (4.1).

Theorem 4.2.1 ([11]). The geodesic between two points u, v of a CAT(0) square complex

X lies in a subcomplex K of X that embeds isometrically in R2 as a chain of monotone

polygons. Moreover, K depends only on the choice of 2-cells containing u and v.
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Figure 4.3: An illustration of Lee and Preparata’s funnel algorithm for finding the shortest
path between two points in a planar polygon.
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Figure 4.4: Continuation of previous figure.



www.manaraa.com

CHAPTER 4. NUMERICAL RESULTS 83

Figure 4.5: Continuation of previous figure.
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Lemma 4.2.2 ([25]). Let P be a simple polygon, and let u, v be distinct points of P . Let T be

a triangulation of P with VertpTq Ă BP , and assume that the dual graph of T is an interval.

The geodesic ruvs in P is made up of line segments each of whose endpoints is u, v, or a

vertex of T.

A bit more work is needed to verify the elementary fact that the directed angle function

described above is continuous and piecewise monotone. (The proof of Theorem 4.2.3 will

be momentarily deferred.)

Theorem 4.2.3. Let X be a nonpositively curved square complex and let γ : ra, bs Ñ X r

VertpXq be a unit-speed path of constant positive curvature. Let v P X r Imagepγq. The

directed angle function Θptq from the tangent γ1ptq to the geodesic rγptqvs is a continuous

function ra, bs Ñ p´2π, 2πs. Moreover, there exists a subdivision a “ s1 ă s2 ă ¨ ¨ ¨ ă

sr`1 “ b such that Θ
ˇ

ˇ

rsk , sk`1s
is monotone for each k.

From Theorem 4.2.3 we conclude that for any S ą a, the bisection method can be applied

finitely many times to find all zeros of Θ
ˇ

ˇ

ra, Ss, since rsk, sk`1s contains exactly one zero

of Θ if and only if ΘpskqΘpsk`1q ď 0. For if ΘpskqΘpsk`1q ă 0, then Θpskq and Θpsk`1q

have opposite signs, and rsk, sk`1s contains exactly one zero of Θ by monotonicity and

continuity, while if ΘpskqΘpsk`1q ą 0, then Θpskq and Θpsk`1q have the same signs, in

which case rsk, sk`1s contains no zeroes of Θ, as Θ is monotone.

Lemma 4.2.4. Let σ : ra, a ` 2πs Ñ R2 be a unit-speed parametrization of a circle. Let

v P R2 r Imageσ. There exists a continuous monotone function θ : ra, a` 2πs Ñ r´2π, 2πs

such that θptq is the directed angle from σ1ptq to the vector σptq´v, and θpaq ¨ θpa`2πq ă 0.
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Proof. Let ATan2 : R2 r tp0, 0qu Ñ p´π, πs be the computer scientist’s arctangent function,

ATan2px, yq “ Argpx` iyq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

arctanpy{xq x ą 0

arctanpy{xq ` π x ă 0, y ě 0

arctanpy{xq ´ π x ă 0, y ă 0

π{2 x “ 0, y ą 0

´π{2 x “ 0, y ă 0.

Suppose σ parametrizes the circle counterclockwise. Then

αptq “

$

’

&

’

%

ATan2pσ1ptqq if ATan2pσ1ptqq ě ATan2pσ1paqq

ATan2pσ1ptqq ` 2π otherwise

defines a monotone increasing function ra, a ` 2πs Ñ p´π, 3πs such that αptq pmod 2πq P

p´π, πs is the directed angle from the x-axis to the vector σ1ptq.

Define β : ra, a` 2πs Ñ r0, 2πs by

βptq “

$

’

&

’

%

ATan2pσptq ´ vq if ATan2pσptq ´ vq ě 0

ATan2pσptq ´ vq ` 2π otherwise,

so that βptq is the angle measured counterclockwise from the x-axis to the vector σptq ´ v.

Let x and y be the two points of the circle through which the line meeting v is tangent to the

circle, Recalling that the angle between a tangent vector and a chord of a circle measures

one-half the angle of the arc subtended by the chord on the side of the tangent vector, we

see that

θptq :“ αptq ´ βptq

is continuous and monotonically increasing in t, reaching a maximum at one of the two

points x, y and a minimum at the other (Figure 4.6).

To ensure that θpaq ¨ θpa` 2πq ă 0, modify θ by adding 2π if αpaq ´ βpaq ă ´2π, or ´2π if
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x

y

v

Figure 4.6: θptq is the directed angle between a tangent σ1ptq to the circle and σptq ´ v.

αpaq ´ βpaq ą 0.

Lemma 4.2.5. Let P Ă R2 be a simply connected simple polygon. Let σ : ra, bs Ñ P be a

unit-speed parametrization of an arc of a circle. Let v P P r Imagepσq. There exist n P N,

z1, . . . , zn´1 P tvuYVertpP q, and a “ s1 ă s2 ă ¨ ¨ ¨ ă sn “ b such that for k P t1, . . . , nu, the

directed angle between σ1ptq and the geodesic in P from σptq to v is equal to the directed

angle between σ1ptq and the geodesic in R2 from σptq to zk for t P rsk, sk`1s.

Proof. Consider the application of the Lee-Preparata funnel algorithm to determine the

geodesic in P with initial point v and terminal point σptq. In particular, recall that a

“funnel” is the subpolygon of P obtained by cutting off each ray in the convex cone

spanned by the raysÝÑz` andÝÑzr where it meets BP , with z P tvuYVertpP q and `, r P VertpP q

distinct. (See Figures 4.3–4.5.) At each step, the algorithm halts if and only if the current

funnel F , say with apex z, meets σ in a nondegenerate arc containing σptq. (Note that, if

F meets σ in one or two isolated points, then F cannot be the final funnel, for in that case

the intersection of rzσptqs r tz, σptqu and BP must contain some vertex of P which must

be processed by the algorithm before halting.) The algorithm outputs the desired geodesic

rvσptqs as a chain of line segments, the last of which is rzσptqs.

We now show that the same z can be used for all w P F X σ: that is, if F is the final funnel
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computed by the algorithm for some geodesic rvσptqs, then for each point w P A :“ F X σ,

the apex z of the final funnel computed by the algorithm for rvws depends only on the

choice of A, not on the choice of w P A. Assume for a contradiction that there exist w,

w1 P A such that the final funnel F computed for rvws has apex z P tvu Y VertpP q, and

the final funnel F 1 computed for rvw1s has apex z1 P tvu Y VertpP q. Since F is the union

of Euclidean shortest paths from z to points of A, rzws is a geodesic in P . By the same

reasoning applied to F 1, rz1ws is a geodesic in P . Since P is uniquely geodesic, we must

have rzws Ă rz1ws Ă rvws or rz1ws Ă rzws Ă rvws, otherwise there would exist two distinct

geodesics from v to w, one containing z and not z1, and the other containing z1 and not z. It

follows that z “ z1, since each point of rvwsX
`

tvuYVertpP q
˘

is the apex of some funnel that

is processed by the algorithm when computing rvws, and only one point of tvu Y VertpP q

can be the apex of the final such funnel. Thus, for each A “ F X σ, where F is a terminal

funnel with apex z, and for every w P A, the last in the chain of line segments making up

the geodesic rvws in P is rzws, where z depends only on the choice of A.

Let F be the set of final funnels computed by the algorithm for a geodesic rvwswith w P σ.

Since there are only finitely manyď
` # VertpP q ` 1

3

˘

possible funnels when computing rvws

as w ranges over σ, the partition of σ determined by the endpoints of the (at most two)

components of σ X F , as F ranges over F, has only finitely many breakpoints a “ s1 ă

s2 ă ¨ ¨ ¨ ă sn “ b. For k P t1, . . . , n´ 1u, let zk be the apex of the final funnel Fk computed

by the algorithm for a geodesic rvσptqs whose intersection with σ is σ
`

rsk, sk`1s
˘

. The

result now follows.

Theorem 4.2.3 can now be established.

Proof of Theorem 4.2.3. Given γ : ra,8q Ñ X , identify an initial segment pγ “ γ
ˇ

ˇ

ra, bs and a

square path pQkqnk“1 with breakpoints ptkqn`1
k“1 for pγ. Write γk “ γ

ˇ

ˇ

rtk , tk`1s
. After applying

the Chepoi-Maftuleac embedding, Lemma 4.2.5 can be applied to partition the domain of
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each γk,

tk “ sk, 1 ă ¨ ¨ ¨ ă sk, mk “ tk`1,

so that each of the directed angle functions Θk, j : rsk, j , sk, j`1s Ñ r´2π, 2πs for a restriction

γk to rsk, j , sk, j`1s is continuous and monotone. Reindex the sk, j , ordered lexicograph-

ically by their indices pk, jq, as s1, s2, . . . , sr`1, and reindex the corresponding directed

angle functions Θk, j accordingly. Since these functions agree at the endpoints of their

domain intervals, the concatenation

Θ “ Θ1 ˚ ¨ ¨ ¨ ˚Θr

is continuous.

It is now trivial to verify a sufficient condition for the existence of a CL path with prescribed

endpoints and initial direction. Moreover, if this condition holds, and if there exists such

a path of length ď µ for some µ ą 0, then our algorithm is guaranteed to find the shortest

such path in finitely many steps.

Corollary 4.2.6. Let γ : ra,8q Ñ X r VertpXq be a ray of constant positive curvature in a

nonpositively curved square complex X . Let v P X r Imagepγq. For each s ą 0, let Θpsq

be the directed angle from γ1psq to rγpsqvs at γpsq. There exists a CL path in X with initial

point γpaq, terminal point v, and initial direction γ1paq if and only if there exist s ą a and

t ą a such that ΘpsqΘptq ď 0. Furthermore, for fixed µ ą 0, all such CL paths of lengthď µ

can be computed numerically in finite time.

Proof. We prove sufficiency; the reverse implication follows from the definition of a CL

path, since we must have Θpsq “ 0 at the breakpoint γpsq. If ΘpsqΘptq ď 0, we can apply

the bisection method finitely many times to find all zeros of Θ
ˇ

ˇ

rs, ts. Since all CL paths have

zero turning angle at their breakpoints by definition, this process determines all CL paths

as required.
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Chapter 5

The d-plane

Throughout this chapter, we will focus on a family of square complexes we call d-planes

(d P t4, 5, 6, . . . u). They are homeomorphic to the Euclidean plane, but not isometric for

any d ě 5.

Definition 5.0.7. A graph is d-regular if every vertex has degree d, i.e. is incident with

exactly d edges.

Definition 5.0.8. The d-plane Xd (d ě 4) is a simply connected surface without boundary

that is a piecewise Euclidean square complex with a d-regular graph as its 1-skeleton.

Thus the neighborhood of each vertex v of the d-plane consists of d copies of the product

space I ˆ I arranged cyclically around v. In §5.1, we verify that the d-plane is the Davis

complex of a right-angled Coxeter system. Figure 2.2 illustrates the simplicial and cubical

cell structures of the neighborhood of a vertex in X5 when the latter is regarded as a Davis

complex. We then exhibit a reconfigurable system whose state space has the 5-plane as its

universal cover. Finally, in §5.2, we examine the shape of curves of constant curvature in

the d-plane.
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5.1 Basic properties

Lemma 5.1.1. Let d ě 4, and let Wd be the group with generating set Sd “ ts1, . . . , sdu and

relators

s2
1 “ ¨ ¨ ¨ “ s2

d “ ps1s2q
2 “ ps2s3q

2 “ ¨ ¨ ¨ psds1q
2 “ 1.

(a) XpWd, Sdq is a topological 2-manifold without boundary.

(b) The 1-skeleton Xp1q of XpWd, Sdq is d-regular.

(c) The link of each vertex in XpWd, Sdq is a d-gon.

(d) XpWd, Sdq is CAT(0), hence special.

(e) Xd “ XpWd, Sdq.

Proof. We will prove (a) directly, verifying (b) and (c) along the way.

We know by Lemma 2.3.22 that XpWd, Sdq is a square complex. To show that XpWd, Sdq

is locally Euclidean, it suffices to show that each point of Xp1q has a neighborhood homeo-

morphic to a disk, since all other points of XpWd, Sdq lie in the interiors of 2-cells.

The cells of XpWd, Sdq are the geometric realizations of the posets under subset inclusion

α “ pWSqďxxT y “ tx
1xT 1y Ď xxT y : x1 PWd, T 1 Ď S, #xT 1y ă 8u

for x PWd and T Ă S such that #xT y ă 8 (see Definition 2.3.21). Recall that dimα “ #T ,

and write

e#T pxxT yq “ |α|.

Suppose |α| is a vertex. We show that star |α| is homeomorphic to a disk. Since dim |α| “ 0,

we have |α| “ e0ptxuq for some x PWd. Then |α| is incident exactly with the edges e1pxxsyq,

s P Sd—from which (b) follows—and with the 2-cells e2pxxsi, sjyq, psisjq2 “ 1.
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Two such 2-cells meet in an edge if they have a common generator, and are disjoint if not:

e2pxxsi, sjyq X e2pxxsk, s`yq “

$

’

&

’

%

e1pxxsjyq if j “ k, i ‰ `

∅ if ti, ju X tk, `u “ ∅.
(*)

Thus the 2-cells incident with |α| are arranged cyclically, giving (c), and their union

Ntxu :“ star |α|

is homeomorphic to a disk.

Suppose |α| is an edge. Then |α| “ e1pxxsjyq for some sj P Sd, and is the intersection of

exactly two 2-cells, as in (*). The union of these 2-cells is a neighborhood for any interior

point of |α| which is homeomorphic to a disk. We conclude that every point of the 1-

skeleton Xp1q has a neighborhood homeomorphic to a disk. Since XpWd, Sdq is the union

of neighborhoods Ntxu (x P Wd) as above, and BNtxu Ă Xp1q, it follows that XpWd, Sdq has

no boundary. Now (a) has been shown.

Part (d) is simply an application of Theorems 2.3.23 and 2.4.17. In particular, XpWd, Sdq is

simply connected, and (e) now follows.

5.1.1 The 5-plane is the universal cover of the state complex for a reconfig-

urable system

In this subsection, we exhibit a reconfigurable system whose state complex is covered by

the 5-plane.

The workspace graph W of this system is a 5-gon with vertices labeled distinctly. The gen-

erators are transpositions of adjacent labels. We might imagine that these transpositions

are carried out by an industrial robot, say, by a rotating pincer-shaped arm able to pick up

and swap distinctly labeled checkers initially placed on the vertices. (See Figure 5.1.)
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Figure 5.1: (RIGHT:) A transposition of adjacent labels in progress, and (LEFT:) a point in
X5 corresponding to the system’s state.

Observe that generators commute if and only if the corresponding edges are disjoint. Since

each edge is disjoint from two edges, and no set of three edges is pairwise disjoint, we

find that each vertex in the state complex is incident with exactly five squares, arranged

cyclically.

The state complex is a closed surface of genus 16, as can be verified by an Euler character-

istic argument, and is orientable, as can be checked directly [17]. Its universal cover is the

5-plane X5 (Figure 5.2), that is, the Davis complex of the right-angled Coxeter system with

generators s, t, u, v, w and relators

pstq2 “ ptuq2 “ puvq2 “ pvwq2 “ pwsq2 “ 1.

The reconfigurable system we have described provides a concrete example of the practical

applications of the present work. Suppose the system begins in a given state, and a goal

state is given, but a new state is prescribed before the original goal state has been achieved.

At the instant when the new goal state is prescribed, we have a Markov-Dubins problem

with free terminal direction.
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X5

ÝÑ

state complex

Figure 5.2: The shaded region in X5 is a minimal region sent by the covering map onto the
state complex.

5.2 Curves of constant curvature in the d-plane

5.2.1 Characterization and numerical experiments

As with Dubins’ 1957 characterization of the solutions to the Markov-Dubins problem with

prescribed terminal direction in X “ R2, the solutions to the problem in the d-plane are

made up of finitely many geodesic segments and arcs of constant curvature a. We are thus

led to consider the problem of characterizing curves of constant curvature in Xd.

One consequence of the nonpositive curvature of Xd is that, when n ě 5, the circumference

of a arc of sufficiently large constant curvature a ě 1 centered at a vertex is pπd{2qR ą 2πR,

where R “ 1{a. This situation recalls that of the hyperbolic plane H2 (that is, the Riemann

surface of constant curvature ´1), in which the circumference of a circle of radius R is

2π sinhpRq ą 2πR. But the behavior of curves of constant curvature exhibits not only

similarities, but also dramatic differences between the geometries of the square complex

Xd and the Riemannian 2-manifolds of constant nonpositive curvature. A ray γ : r0,8q Ñ

H2 of constant curvature a ě 0 has image either an embedded circle, a hypercycle, or a

horocycle, depending on whether a ą 1, a ă 1, or a “ 1 [10]. In any case, the image of γ is
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a smooth 1-manifold, as is the case for the images of constant-curvature rays in R2.

In Xd, on the other hand, a ray of constant curvature may self-intersect. Furthermore,

numerical experiments show that the behavior of a curve γ of constant curvature a in Xd

is not a function of a, but depends instead on the combinatorics of the sequence of square

cells γ visits. Such a curve γ may be a proper topological ray that attains an arbitrarily

large distance from its initial point (Figure 5.3), a rose curve made up of M “ lcmt4, du

circular arcs (Figure 5.10), or an embedded (metric) circle. It will be convenient to examine

only those rays which do not meet VertpXdq, because an arc in Xd (d ě 5) which is smooth

at breakpoints (Definition 3.3.8) may have any of infinitely many exit directions as it passes

through a breakpoint. Furthermore, since the shape of a ray of constant curvature depends

in part on its initial direction, the classification of a ray of constant curvature which pass

through vertices of Xd is not a well-posed problem unless an exit direction is specified at

each vertex it meets. The restriction of our focus to rays in X˚d is not a significant loss of

generality, however, since any arc in Xd which meets VertpXdq can be decomposed into

subarcs, whose interiors do not.

5.2.2 Annulus Condition

In the square complex E2, non-intersecting hyperplanes are parallel lines separated by a

distance of at least 1. Consequently, in order to prove that a ray γ : rt1,8q Ñ E2 with

square path Q “ pQnq
8
n“1 is proper, it would be enough to show that there exist subpaths

Qrak, bks “
Ťbk
i“ak

Qi of Q and halfspaces H`k respectively bounded by hyperplanes Hk

of E2 such that H`1 Ą H`2 Ą H`3 Ą ¨ ¨ ¨ and Qrak`1, bk`1s Ă H`k for all k P N (Figure

5.4).

A similar argument can be used to prove that a ray in a generic square complex X is

proper if one can construct a sequence of hyperplanes Hk bounding sequences of nested

halfspaces as in the previous subsection (see Lemma 2.5.4). When X is the square complex
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Figure 5.3: BOTTOM: A proper ray γ of constant curvature in X˚5 . TOP: The corresponding
annular carrier in E2.
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¨ H0
- ¨ H1

- ¨ H2
- ¨ H3

-

H0
+Æ H1

+Æ H2
+Æ H3

+Æ

Figure 5.4: Showing a ray in E2 is proper with nested halfspaces.

associated with a right-angled Coxeter system pW , Sq, we can establish the existence of

such a sequence. Indeed, if two hyperplanes H and H 1 osculate (Definition 2.4.9), then H

andH 1 behave analogously to hyperparallel lines in H2, and have distance 1 between them

(Lemma 2.4.11).

To produce the desired sequence of nested halfspaces for a ray γ of constant curvature

a ą 0 in Xd, we proceed as follows. (That these steps can in fact be carried out will be

verified in the proofs of this subsection.)

• Let Q be a square path for γ. Let ϕ : UpQq Ñ E2 be a folding map, where UpQq is the

unfolding of Q, and let Σ be the image under ϕ of the lift of γ to UpQq. (See Figure 2.7.)

We assume in the current subsection that Carrier Σ is an annulus, i.e. homeomorphic

to S1 ˆ I .

• Taking k “ 1, construct two stacks qHk and qHk`1 of hyperplanes of E2 such that

(i) p qQnq
nk`1
n“1 is properly segmented with respect to qHk for some nk ą 1,

(ii) p qQnq
nk`1`1
n“nk´1 is properly segmented with respect to qHk`1 for some nk`1 ą nk`1,

and

(iii) the hyperplanes of qHk`1 are perpendicular to those of qHk

(see the proof of Theorem 5.2.7.) The hyperplanes of qHk and qHk`1 lift to hyperplanes

in Xd (Theorem 5.2.2) which form a stack with respect to which pQnq
nk`1`1
n“1 is prop-
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Figure 5.5: The image of a folding ϕ : UpQq Ñ E2 that satisfies the Annulus Condition.

erly segmented (Elbow Lemma, 5.2.4).

• Increment k and repeat the previous step, constructing a stack qHk in E2 such that (ii)

and (iii) are satsified. Repeat this until every square of Carrier Σ meets the carrier

of a hyperplane of one of the stacks so constructed, with the hyperplanes of succes-

sive stacks being perpendicular. This can be done with exactly four stacks repeated

periodically, qH5 “
qH1, qH6 “

qH2, . . . .

• By induction, pQnq8n“1 is properly segmented with respect to lifts of the hyperplanes

of qH1, qH2, qH3, . . . to Xd (Lemma 5.2.5).

The following conventions will be in effect for the remainder of this section.

Notation. Given a square path Q “ pQnq
8
n“1 in Xd, a folding map ϕ : UpQq Ñ E2, and the

natural folding ψ : UpQq Ñ Xd (Definition 2.5.13), we write

qQn “ ϕp pQnq Ă E2, χn “ ψ ˝
`

ϕ
ˇ

ˇ

pQn

˘´1
.
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UpQq

E2 .................................................
χn

-
�

ϕ

Xd

ψ

-

p pQnq
8
n“1

`

qQn
˘m

n“1
....................................

χn
-

�

ϕ

pQnq
8
n“1

ψ

-

A square path Q in Xd can be transferred to the Euclidean plane by constructing its un-

folding complex UpQq (Definition 2.5.11) and sending it into E2 via the natural folding, a

process which may be visualized as a cellular analogue of analytic continuation. In the next

lemma, we reverse the direction of transfer, and show how a sequence of nested halfspaces

in E2 can be used to determine a sequence of nested halfspaces in Xd.

Though our goal is to use these nested halfspaces to prove that certain rays are proper,

we will work in terms of square paths for the rays in question. We therefore do not

directly refer to nested halfspaces, but instead carry out our discussion in terms of properly

segmented square paths.

In Theorem 5.2.2, we establish a technique which uses scaffolds to transfer finite stacks of

hyperplanes from E2 to stacks in Xd, and we show that, for a finite square path Q to be

properly segmented in Xd, it is enough to construct a stack in E2 with respect to which its

counterpart under a folding map UpQq Ñ E2 is properly segmented. But first, we make a

simple observation.

Lemma 5.2.1. Let D be an edge in a nonpositively curved square complex. If E1, E2 are

adjacent edges of X such that E1 and D are adjacent sides of some square Q1 of X , and E2

and D are adjacent sides of some square Q2 of X , then the hyperplanes HpE1q and HpE2q

osculate. (See Figure 5.6.)

Proof. Let v the vertex where E1 and E2 meet. If there were some 2-cell Q in X with

adjacent sides E1 and E2, then the graph linkpvqwould contain a cycle of three edges, one

for each of the 2-cells Q1, Q2, Q, and hence would not be flag, in violation of the definition
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Figure 5.6: Illustration for Lemma 5.2.1.

of a nonpositively curved cube complex. Therefore, the adjacent edges E1 and E2 are not

contained in any single 2-cell in X , so the hyperplanes HpE1q and HpE2q osculate.

Theorem 5.2.2 (Transfer of a finite stack). Let Q :“ pQnq
m
n“1 be an edgewise square path in

a special square complex X . Let ϕ : UpQq Ñ E2 be a folding map. Suppose the square path

p qQnq
m
n“1 is properly segmented with respect to some stack qH “ p qHkq

p
k“1 of hyperplanes of

E2. Then there exist integers

1 “ a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ ď bp “ m

and a scaffold
`

pEkq
p´1
k“1, pFkq

p´1
k“1

˘

for qQ with respect to qH such that H :“ pHkq
p
k“1 is a stack,

where

H1 :“ Hpχb1pE1qq,

H2 :“ Hpχa2pF1qq “ Hpχb2pE2qq,

...

Hp´1 :“ Hpχap´1pFp´2qq “ Hpχbp´1pEp´1qq,

Hp :“ HpχappFp´1qq,
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and Q is properly segmented with respect to H.

Proof. Let

1 “ a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ ď bp “ m

be as in Definition 2.5.7. As in the proof of Lemma 2.5.16, we have ak`1 “ bk ` 1 for

each k P t1, . . . , p ´ 1u, and there exist Ek P EdgespQbkq and Fk P EdgespQak`1
q for

k P t1, . . . , p´ 1u such that
`

pEkq
p´1
k“1, pFkq

p´1
k“1

˘

is a scaffold for qQ with respect to qH. Note that, for each k, Ek and Fk are adjacent, HpEkq “

qHk, and HpFkq “ qHk`1 by Definition 2.5.15.

To see that H is a stack, we verify that HpχbkpEkqq and Hpχak`1
pFkqq osculate for each

k P t1, . . . , p´ 1u. First observe that

χbkp
qQbkq “ Qbk , χak`1

p qQak`1
q “ Qak`1

,

and χbk and χak`1
agree on

qD :“ qQbk X
qQak`1

.

Then the edges χbkpEkq and χak`1
pFkq are adjacent, as Ek X Fk Ă qQbk X

qQak`1
. Since each

of χbk and χak`1
map adjacent sides to adjacent sides, we know

D :“ χbkp
qDq “ χak`1

p qDq

is adjacent to χbkpEkq in Qbk , and D is adjacent to χak`1
pFkq in Qak`1

. Now Lemma 5.2.1

can be applied to the edges D, χbkpEkq, and χak`1
pFkq, and we conclude that HpχbkpEkqq

and Hpχak`1
pFkqq osculate.

It is now obvious that Definition 2.5.7 is satisfied. We will spell out this routine verification.
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First, we verify condition (1) of Definition 2.5.7, Qrak, bks Ă CarrierHk, for k P t1, . . . , p´

1u. The continuous map

Xk :
bk
ď

n“ak

qQn Ñ
bk
ď

n“ak

Qn Xk
ˇ

ˇ

qQn
“ χn,

takes midplane-equivalent midplanes of qQrak, bks to midplane-equivalent midplanes of

Qrak, bks. For n P tak, . . . , bku, since qQn X qHk Ă HpEkq, we therefore have

Xk
`

qQn X qHk

˘

Ă H
`

XkpEkq
˘

“ H
`

χbkpEkq
˘

“ Hk.

Thus

Qn “ CarrierXkp qQn X qHkq Ă CarrierHk.

The proof of condition (1) for k “ p is the same, mutatis mutandis (replace Ek above by

Fp´1 Ă qHp).

Since ak`1 “ bk ` 1 for each k P t1, . . . , p´ 1u, condition (2) of Definition 2.5.7 is satisfied

vacuously.

The fact that

Qrak´1, akq “ Qrak´1, bk´1s Ă CarrierHk´1

and

Qpbk, bk`1s “ Qrak`1, bk`1s Ă CarrierHk`1

meet different components of CarrierpHkqrHk, which is condition (3) of Definition 2.5.7,

is also easily checked, using connectedness and the fact that, by Definition 2.4.16, Hk is

two-sided. To see this, observe that by continuity, Xk maps the connected components of

Carrierp qHkqr qHk into connected components of CarrierpHkqrHk, and that the latter two

components are distinct since CarrierHk is two-sided and not self-orthogonal.
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The next two technical lemmas set forth sufficient conditions under which we can obtain

a stack H of hyperplanes with respect to which a given square path Q in Xd is properly

segmented, given a partition of Q into two pieces Q1 and Q2 that are properly segmented

with respect to given stacks H1 and H2 respectively. We subsequently extend to the case

(Lemma 5.2.5) that Q is partitioned into infinitely many pieces Qi (i P N).

In the first of these lemmas (Lemma 5.2.3), which is stated for a general square complex,

we require that the sequences H1 and H2 overlap, with the last two hyperplanes of H1

matching the first two of H2; then it is just a matter of reindexing the hyperplanes and

checking definitions.

In the second (Lemma 5.2.4), we take Q to be a square path in Xd for d ě 5, push Q into

E2 via a folding map UpQq Ñ E2, and establish conditions under which two stacks of

hyperplanes in E2 can be transferred back to Xd in such a way that the original square path

Q is properly segmented with respect to their concatenation. The key requirements are that

the square paths in E2 corresponding to Q1 and Q2 are joined by three squares that form

an “elbow” shape that overlaps the tail of Q1 and the head of Q2, and that the hyperplanes

meeting this elbow shape do so in a suitable configuration.

Lemma 5.2.3. Let pQnq
q
n“1 be a locally monotone edgewise square path in a square com-

plex X . Let p P t2, . . . , q ´ 1u, and suppose that each of the three square paths

pQnq
p`1
n“1, pQnq

q
n“p´1, pQp´1, Qp, Qp`1q,

is properly segmented with respect to stacks

pHkq
r`1
k“1, pHkq

t
k“r, pHr, Hr`1q

of hyperplanes, respectively. Then pQnq
q
n“1 is properly segmented with respect to pHkq

t
k“1.

Proof. There are three cases:
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(i) both Qp´1 and Qp lie in CarrierHr, and Qp`1 lies in CarrierHr`1,

(ii) Qp´1 lies in CarrierHr, Qp`1 lies in CarrierHr`1, and Qp lies in neither, and

(iii) Qp´1 lies in CarrierHr, and both Qp and Qp`1 lie in CarrierHr`1.

Assume the former; the remaining cases are similar.

By hypothesis, there exist integers

1 “ a
p1q
1 ď b

p1q
1 ă ¨ ¨ ¨ ă a

p1q
r`1 ď b

p1q
r`1

and

ap2qr ď bp2qr ă ¨ ¨ ¨ ă a
p2q
t ď b

p2q
t “ q

such that

(1) Qra
p1q
k , bp1qk s Ă CarrierpHkq for k P t1, . . . , r ` 1u and Qra

p2q
k , bp2qk s Ă CarrierpHkq for

k P tr, . . . , tu,

(2) Qpb
p1q
k , ap1qk`1q Ă Xr pHkYHk`1q for k P t1, . . . , ru and Qpb

p2q
k , ap2qk`1q Ă Xr pHkYHk`1q

for k P tr, . . . , t´ 1u,

(3) Qra
p1q
k´1, ap1qk q and Qpb

p1q
k , bp1qk`1s meet distinct components of Qra

p1q
k , bp1qk s r Hk for

k P t1, . . . , r ` 1u and Qrb
p2q
k´1, bp2qk q and Qpb

p2q
k , bp2qk`1s meet distinct components of

Qra
p2q
k , bp2qk srHk for k P tr, . . . , t´ 1u.

Choose a11, . . . , a1t and b11, . . . , b1t as follows:

1 “ a
p1q
1
‖
a1
1

ă ¨ ¨ ¨ ď b
p1q
r´1
‖

b1
r´1

ă ap1qr
‖
a1r

ď bp1qr
‖
b1r

ă a
p2q
r`1
‖

a1
r`1

ď b
p2q
r`1
‖

b1
r`1

ă ¨ ¨ ¨ ă a
p2q
t
‖
a1
t

ď b
p2q
t
‖
b1
t

“ q.

Condition (1) in Definition 2.5.7 is satisfied for all indices of the sequence pa1kq
t
k“1. We need

to check conditions (2) and (3) only for selected indices near b1r “ b
p1q
r “ p and a

p1q
r`1 “

b
p1q
r`1 “ p` 1 “ a

p2q
r`1 “ a1r`1:
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(2) Qpb1r, a1r`1q “ Qpb
p1q
r , ap1qr`1q Ă X r pCarrierHr Y CarrierHr`1q,

(3) Qra1r´1, a1rq “ Qra
p1q
r´1, ap1qr q and Qpb1r, a1r`1s “ Qpb

p1q
r , ap1qr`1smeet distinct components of

Qra1r, b
1
rsrHr,

and Qra1r, a1r`1q “ Qra
p1q
r , ap1qr`1q and Qpb1r`1, a1r`2s “ Qpb

p2q
r`1, ap2qr`2smeet distinct compo-

nents of

Qra1r`1, b1r`1srHr`1.

Lemma 5.2.4 (Elbow Lemma). Let pQnq
q
n“1 be a locally monotone edgewise square path

in Xd (d ě 5). Let p P t2, . . . , q ´ 1u, and suppose that each of the two square paths

p qQnq
p´1
n“1, p qQnq

q
n“p`1 in E2 is properly segmented with respect to stacks p qHkq

r´1
k“1, p qHkq

t
k“r,

respectively, of hyperplanes in E2. Further assume that

• qHr´1 K qHr,

• qHr´1 X qHr Ă E2 r qQp,

• qHr´1 contains a midplane of qQp´1, and

• qHr contains a midplane of qQp`1.

Then pQnq
q
n“1 is properly segmented with respect to some stack pHkq

t
k“1 of hyperplanes in

Xd.

Proof. The bulleted assumptions on qHr´1 and qHr force the square path p qQp´1, qQp, qQp`1q

to form an “elbow” shape as shown in Figure 5.7. Since d ě 5, the pair of hyperplanes in

Xd that correspond to qHr´1 and qHr osculate, and thus constitute a stack in Xd with respect

to which the square path p qQp´1, qQp, qQp`1q is properly segmented. The result now follows

from Lemma 5.2.3 and Theorem 5.2.2.
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Q
Ó
p-1 Q

Ó
p

Q
Ó
p+1

Figure 5.7: Illustration for Lemma 5.2.4.

Lemma 5.2.5. Let pQnq8n“1 be a locally monotone edgewise square path in Xd (d ě 4). Let

ppiq
8
i“1 and priq8i“1 be two increasing sequences of integers with p1 ą 1 and r1 ą 1. Suppose

that for each i P N that each of the square paths

p qQnq
pi`1
n“pi´1

, p qQnq
pi`1

n“pi´1, p qQpi´1, qQpi , qQpi`1q,

in E2 is properly segmented with respect to stacks

p qHkq
ri`1
k“ri´1

, p qHkq
ri`1

k“ri
, p qHri , qHri`1q,

respectively, of hyperplanes in E2. Then pQnq8n“p1´1 is properly segmented with respect to

some stack pHkq
8
k“1 of hyperplanes in Xd.

Proof. This follows by induction from Lemma 5.2.4.

It remains only to show how to produce a stack of hyperplanes in E2 with respect to which

Carrier Σ is properly segmented. Then Lemma 5.2.5 applies to show that the original ray

γ in Xd is properly segmented by some stack of hyperplanes, and hence is proper.

Lemma 5.2.6. Let qγ : rt1,8q Ñ E2 be a unit-speed ray of constant curvature |qγ2| ”

a ą 0 with image Σ and an edgewise square path p qQnq8n“1. Assume that Carrier Σ is

homeomorphic to an annulus.

(a) There exists a p such that qQn`p “ qQ for all n.



www.manaraa.com

CHAPTER 5. THE d-PLANE 106

(b) There exist horizontal hyperplanes qH , qH 1 and n1, n2, n3, n4 P N such that

n1 ` 1 ă n2, n2 ` 1 ă n3, n3 ` 1 ă n4 ă n1 ` p,

Carrierp qHq X CarrierpΣq “
n2
ď

n“n1

qQn,

and

Carrierp qH 1q X CarrierpΣq “
n4
ď

n“n3

qQn.

(c) There exist stacks qH1, qH3 of vertical hyperplanes of E2 and stacks qH2, qH4 of hori-

zontal hyperplanes such that p qQnq
ni`1´1
n“ni`1 is properly segmented with respect to qHi

(i P t1, 2, 3u) and p qQnq
n1`p´1
n“n4`1 is properly segmented with respect to qH4.

(d) Each pair of stacks qHi, qHi`1, taking indices mod 4, satisfies the bulleted hypotheses of

Lemma 5.2.4.

Proof. (a) is obvious.

(b): Let x be the point of the circle Σ with minimum vertical coordinate x2, let qH be the

horizontal hyperplane of greatest vertical coordinate whose carrier contains x, and write

rrx2ss “

$

’

&

’

%

rx2s if x2 R Z,

rx2s` 1 if x2 P Z.

Clearly C :“ Carrier
 

ξ P Σ : ξ2 ď rrx2ss
(

is connected and contained in Carrier qH .

We show that C consists of at least three successively adjacent 2-cells. Assume that Σ is

oriented counterclockwise without loss of generality. Let n1 be the minimal index such

that qQn1 is the leftmost 2-cell of C, and let n2 be the minimal index no less than n1 such

that qQn2 is the rightmost square of C.

Let w “ pw1, w2q and y “ py1, y2q be the leftmost and rightmost points of Σ, respectively.
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Figure 5.8: C must contain more than two successively adjacent 2-cells, as Carrier Σ «

S1 ˆ I and Σ meets no vertex of E2.

If w P C (or y P C), then by symmetry, the circle Σ is contained in

 

ξ : rrx2ss´ 1 ď ξ2 ď rrx2ss` 1
(

.

But this union of two adjacent horizontal hyperplane carriers contains no subcomplex

homeomorphic to an annulus, contrary to our hypothesis. If w and y lie in adjacent 2-cells

of E2, then the left and right semicircles of Σ lie in adjacent vertical hyperplane carriers,

which is also impossible. Thus w2 “ y2 ą rrx2ss, and w and y do not lie in adjacent 2-cells

of E2. Examining the remaining cases shows that, since Carrier Σ is an edgewise square

path, C must contain at least three successively adjacent 2-cells (see Figure 5.8). Thus

n1 ` 1 ă n2. We choose qH 1, n2, and n3, and show that n2 ` 1 ă n3, n3 ` 1 ă n4, and

n4 ă n1 ` p, in an analogous fashion.

(c): Let Mn be the vertical midplane of qQn for each

n P tn1 ` 1, . . . , n2 ´ 1u Y tn3 ` 1, . . . , n4 ´ 1u,

let qH1 “ p qHkq
p1
k“1 be the stack determined by the midplanesMn, n1 ă n ă n2, and let qH3 “
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p qJkq
p3
k“1 be determined by the midplanes Mn, n3 ă n ă n4. (Note that the hyperplanes

HpMnq need not be distinct for distinct values of n.) Let Mn be the horizontal midplane of

qQn for

n P tn2 ` 1, . . . , n3 ´ 1u Y tn4 ` 1, . . . , n1 ` p´ 1u,

let qH2 “ pqIkq
p2
k“1 be the stack determined by Mn, n2 ă n ă n3, and let qH4 “ p qKkq

p4
k“1 be the

stack determined by Mn, n4 ă n ă n1 ` p. Clearly (c) follows.

(d): Consider qQn2 . Its neighbor qQn2´1 lies to its left, and by our choice of n2, we know

qQn2`1 lies above it. It follows that qIp2 “ HpMn2´1q and qJ1 “ HpMn2`1q are perpendicular.

It is now obvious that the bulleted hypotheses of the Elbow Lemma (5.2.4) hold for the

square paths p qQnqn2´1
n“n1`1, p qQnqn3´1

n2`1 and the stacks qH2 and qH3, and the remainder of (d)

can be verified by similar arguments.

Theorem 5.2.7 (Annulus Condition). Let γ : rt1,8q Ñ X˚d (d ě 5) be a ray of constant

curvature a ą 0 with locally monotone edgewise square path Q “ pQnq
8
n“1. Let ϕ : UpQq Ñ

E2 be a folding map. If Imageϕ is an annulus, i.e. homeomorphic to S1 ˆ I , then γ is a

proper ray. (See Figure 5.3.)

Proof. Let pγ be the lift of γ to UpQq, and write p pQnq8n“1 for its square path in UpQq “

Ť8
n“1

pQn. Write qγ “ ϕpγ and qQn “ ϕp pQnq (n P N). By Lemma 5.2.6, there exist a p such

that qQn`p “ qQn for all n P N, a partition of the square path p qQnq
p
n“1 into four subpaths

qQi, i P t1, . . . , 4u, and stacks qHi, i P t1, . . . , 4u, of hyperplanes such that the hypotheses

of Lemma 5.2.4 are satisfied for qQi, qQi`1 and qHi, qHi`1, i P t1, . . . , 4u, taking indices mod

4. Applying Lemma 5.2.4 yields that pQnq
p
n“1 is properly segmented with respect to some

stack in Xd.

Using Lemma 5.2.5, the argument just given can be extended to show that the entire square

path Q “ p pQnq
8
n“1 is properly segmented with respect to some stack of hyperplanes in Xd.

Then by Lemma 2.5.8, γ is proper.
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Remark. Numerical experiments suggest that the Annulus Condition is not a necessary

condition for a curve of constant curvature in Xd (d ě 5) to be a proper ray (Figure 5.9).

5.2.3 Small Block Condition

We now turn our attention to the case that either the image of the folding mapϕ is isometric

to the square region r´1, 1s ˆ r´1, 1s.

Let γ : rt1,8q Ñ Xd (d ě 5) be a unit-speed ray of constant nonzero curvature with

edgewise square path Q “ pQkq
8
k“1, and let ϕ : UpQq Ñ E2 be a folding map. For simplicity,

assume that each γ XQk is a nondegenerate arc.

Before proceeding, let us make the trivial observation that Imageϕ is isometric to r´1, 1sˆ

r´1, 1s only if Σ “ ϕpγ : rt1,8q Ñ E2 contains exactly one vertex in its interior S :“

convpΣq r Σ, where conv denotes the convex hull. For take Imageϕ “ r´1, 1s ˆ r´1, 1s.

Clearly S Ă intpImageϕq contains at most one vertex, the origin 0. Assume for a contra-

diction that 0 R S. Then by Minkowski’s Separating Hyperplane Theorem (see, e.g., [24]),

the convex set S lies in an open halfspace L` bounded by a line through the origin, say

with normal N such that xx, Ny ě 0 for x P S Ą Σ. Since xe, Ny ă 0 for at least one

of ˘e1, ˘e2, where e1, e2 are the standard unit basis vectors of E2, we see that E2 r L`

contains at least one of the 2-cells of r´1, 1s ˆ r´1, 1s. But then σ Ă L` cannot meet the

interior of this 2-cell Q. Since each arc γ XQk is nondegenerate, it follows that Imageϕ Ă
`

r´1, 1s ˆ r´1, 1s
˘

r intQ, contrary to our hypothesis. Thus the origin must lie in the

interior of Σ.

Theorem 5.2.8 (Small Block Condition). Let γ : rt1,8q Ñ Xd (d ě 5) be a unit-speed ray of

constant nonzero curvature with edgewise square path Q “ pQkq
8
k“1, and let ϕ : UpQq Ñ E2

be a folding map. Assume that each γk :“ γ XQk is nondegenerate, i.e. not a single point.

If Imageϕ is isometric to r´1, 1s ˆ r´1, 1s, then γ is made up of M distinct circular arcs,

where M “ lcmt4, du or M “ d.



www.manaraa.com

CHAPTER 5. THE d-PLANE 110

Figure 5.9: BOTTOM: A proper ray γ of constant curvature in X˚5 . TOP: The corresponding
non-annular carrier in E2.
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Figure 5.10: A rose curve in X5.

Proof. Assume Imageϕ “ r´1, 1s ˆ r´1, 1s without loss of generality. Let t1 ă t2 ă ¨ ¨ ¨ be

a sequence of breakpoints for γ with respect to Q, i.e.

γk :“ γ
ˇ

ˇ

rtk , tk`1s

is contained in Qk. Write

ϕk “ ϕ
ˇ

ˇ

Qk
: UpQq Ą Qk Ñ r´1, 1s ˆ r´1, 1s, xk “ γptkq, x1k “ ϕkpxkq.

Since the interior of the circle Σ “ ϕpγ contains exactly one vertex of E2, the origin, we

know that Σ meets the axes of E2 in exactly four points x1k P ϕpQkq, k P t1, . . . , 4u. Since

Imageϕ “ r´1, 1s ˆ r´1, 1s, the 2-cells Qk Ă Xd all share a common vertex w P Xd, and

ϕkpwq “ 0 for all k. Since each ϕk is an isometric map,

dXdpw, xkq “ dp0, x1kq “ |x
1
k|.

Suppose |x11| “ |x12| and |x13| “ |x14|. Since the chord rx11x
1
3s is the perpendicular bisector

of rx12x
1
4s and vice versa, the intersection of these two chords is the center of Σ by a result

of Euclid ([21], Bk. III, Porism to Prop. 1). But we know that the intersection of rx11x
1
3s and

rx12x
1
4s is the origin. Since the segments r0x11s, . . . , r0x

1
4s are thus radii of the circle Σ, and
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Figure 5.11: Cases for Theorem 5.2.8.

the arcs

Őx11x
1
2, Őx12x

1
3, Őx13x

1
4, Őx14x

1
1

are all therefore congruent, so are their preimages

Őx1x2, Őx2x3, Őx3x4, Őx4x5.

It follows that the reflection of γ1 Ă Xd in the edge e12 :“ Q1 XQ2 is γ2, the reflection of γ2

in e23 :“ Q2 XQ3 is γ3, and so on, and then that γ is a (metric) circle made up of d arcs.

By the Intersecting Chord Theorem ([21], Bk. III, Prop. 35), we have |x11||x
1
3| “ |x12||x

1
4|.

Therefore, if |x11| “ |x12| “ |x13|, we must have |x14| “ |x11|, and the conclusions of the

previous paragraph obtain.

Up to a cyclic permutation of the labels x11, x12, x13, x14, there are three remaining cases:

• |x11| “ |x12| ‰ |x13| “ |x14|.

• |x11| “ |x13|, |x12|, and |x14| are distinct.

• |x11|, |x12|, |x13|, and |x14| are all distinct.

Examining each of these possibilities, we see that |xLn`i| “ |x1Ln`i| “ |x1i| for each i P

t1, 2, 3, 4u iff Ln ” 0pmod 4q. Therefore, γ is made up of M “ lcmt4, du distinct circular

arcs.
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Chapter 6

Future directions

As mentioned in the introduction to Chapter 4, the question of whether or not there exist

solutions to the Markov-Dubins problem with prescribed initial direction which are not

CL paths remains open at the conclusion of the present work. Although the existence of

non-CL length-minimal paths of bounded curvature in a square complex seems doubtful,

their existence in complexes of dimension ě 3 is all but assured by the work of Sussmann

and his collaborators (see, e.g. [35]), who find that in R3, some Markov-Dubins problems

have solutions they describe as helicoids. We hope to determine whether non-CL length-

minimizers are possible in dimension 2, and to extend the characterization of solutions

established by Sussmann and others to cube complexes with dimension ě 3.

While preliminary results do indicate that there exists a simple sufficient condition which

determines whether or not some admissible path in a nonpositively curved square com-

plex exists, given the boundary conditions which define a Markov-Dubins problem with

free terminal vector, we have not presented such a condition in this text. In conjunction

with Theorem 3.2.2, such a condition would provide a complete answer to the question of

when a solution to a given problem is guaranteed to exist.

It is to be hoped that the results in the current work might be extended to the Markov-
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Dubins problem in a nonpositively curved square complex with prescribed in initial and

terminal vector. The diversity of the possible shapes of solutions in Dubins’ original

problem is almost entirely due to the specification of the terminal vector, and necessitates

the consideration of CLC paths made up of two arcs of a circle joined by a line segment, and

CCC (or “teardrop”) paths composed of three circular arcs having alternating orientation.

(The utility of such a teardrop-shaped path will be clear to any driver who has executed a

U-turn in a confined parking lot.) Of course, in a planar region of the type considered by

Jacobs and Canny (see §4.1), any number of segments, each a circular arc or a geodesic, is in

principle possible for a solution that is required to navigate around several obstacles. The

one-dimensional bisection method we have used to find CL paths will not be sufficient to

determine shortest paths consisting of three or more segments of varying type, including

even the simplest analogue of Dubins’ teardrop paths. It remains to be seen whether it

is possible, on the basis of information which may be known about a particular square

complex, to establish a bound on the number of segments a shortest path may have for

any given problem, regardless of the boundary conditions. In the case of the d-plane, it

is clear that the explosion of total angle measure at vertices when d ě 5 will make the

circumnavigation of a vertex dramatically less efficient than it would be for d “ 4. Future

research may reveal that, under circumstances to be determined, the circumnavigation of a

vertex can be replaced by a more efficient, but perhaps less intuitively obvious route.

Another area which might be explored is the applicability of our methods to unions and

quotients of d-planes. Such spaces arise naturally in connection with right-angled Artin

systems, which themselves arise naturally in connection with reconfiguration problems.

Indeed, the generalized braid groups G are fundamental to the study of classical configu-

ration spaces. When such a group, whether right-angled or not, acts properly on a CAT(0)

cube complex X , we expect that the solution of Markov-Dubins problems in X will be

amenable to methods analogous to those we have presented.

A final possible extension of our ideas, proposed informally by Guilbault, would exploit
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the phenomenon of bifurcating geodesics by associating a variable cost with each of the

possible directions by which a geodesic might enter a cube. Given a sufficiently high-

dimensional Euclidean space Rd, it should be possible to embed the state complex for

a given reconfigurable system in such a way that zero-cost entry vectors correspond to

Euclidean geodesics. Geodesic segments under the ambient Euclidean metric might then

represent reconfiguration strategies that are deemed ideal with respect to considerations

not easily represented in the state complex, e.g., energy consumption, or kinematic con-

straints on systems external to the one being modeled.
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